Blanche Capel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547878/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beatrice Mintz (1921-2022): an innovator in embryo research and cancer biology. Development (Cambridge), 2022, 149, .	2.5	0
2	Origin, specification and differentiation of a rare supporting-like lineage in the developing mouse gonad. Science Advances, 2022, 8, .	10.3	32
3	A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells. Biology of Reproduction, 2021, 104, 861-874.	2.7	12
4	Loss of <i>Mafb</i> and <i>Maf</i> distorts myeloid cell ratios and disrupts fetal mouse testis vascularization and organogenesisâ€. Biology of Reproduction, 2021, 105, 958-975.	2.7	4
5	Concerted morphogenesis of genital ridges and nephric ducts in the mouse captured through whole-embryo imaging. Development (Cambridge), 2021, 148, .	2.5	15
6	Mapping the peripheral nervous system in the whole mouse via compressed sensing tractography. Journal of Neural Engineering, 2021, 18, 044002.	3.5	3
7	Sex determination without sex chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200109.	4.0	17
8	A brief review of vertebrate sex evolution with a pledge for integrative research: towards â€~ <i>sexomics</i> '. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200426.	4.0	39
9	Differentiation of fetal sertoli cells in the adult testis. Reproduction, 2021, 162, 141-147.	2.6	4
10	The Chromatin State during Gonadal Sex Determination. Sexual Development, 2021, 15, 308-316.	2.0	5
11	Sertoli cell ablation and replacement of the spermatogonial niche in mouse. Nature Communications, 2020, 11, 40.	12.8	51
12	Combined iDISCO and CUBIC tissue clearing and lightsheet microscopy for in toto analysis of the adult mouse ovaryâ€. Biology of Reproduction, 2020, 102, 1080-1089.	2.7	36
13	Intravital imaging of mouse embryos. Science, 2020, 368, 181-186.	12.6	70
14	Temperature-dependent sex determination is mediated by pSTAT3 repression of <i>Kdm6b</i> . Science, 2020, 368, 303-306.	12.6	78
15	The RNA-binding protein DND1 acts Sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development (Cambridge), 2019, 146, .	2.5	24
16	RUNX1 maintains the identity of the fetal ovary through an interplay with FOXL2. Nature Communications, 2019, 10, 5116.	12.8	59
17	CBX2 is required to stabilize the testis pathway by repressing Wnt signaling. PLoS Genetics, 2019, 15, e1007895.	3.5	51
18	Commentary on "Direct visualization, by β-galactosidase histochemistry, of differentiated normal cells derived from malignant teratocarcinoma in allophenic mice―by Dewey and Mintz 1978. Developmental Biology, 2019, 450, 65-75.	2.0	0

#	Article	IF	CITATIONS
19	Preface. Current Topics in Developmental Biology, 2019, 134, xiii-xvii.	2.2	1
20	Neural crest-derived neurons invade the ovary but not the testis during mouse gonad development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5570-5575.	7.1	21
21	WOMEN IN REPRODUCTIVE SCIENCE: To be or not to be a testis. Reproduction, 2019, 158, F101-F111.	2.6	9
22	Epigenetic regulation of male fate commitment from an initially bipotential system. Molecular and Cellular Endocrinology, 2018, 468, 19-30.	3.2	34
23	Sex reversal. Current Biology, 2018, 28, R1234-R1236.	3.9	19
24	The histone demethylase KDM6B regulates temperature-dependent sex determination in a turtle species. Science, 2018, 360, 645-648.	12.6	237
25	Genome-wide identification of regulatory elements in Sertoli cells. Development (Cambridge), 2017, 144, 720-730.	2.5	36
26	<i>Dmrt1</i> induces the male pathway in a turtle with temperature-dependent sex determination. Development (Cambridge), 2017, 144, 2222-2233.	2.5	94
27	Numb regulates somatic cell lineage commitment during early gonadogenesis in mice. Development (Cambridge), 2017, 144, 1607-1618.	2.5	36
28	Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nature Reviews Genetics, 2017, 18, 675-689.	16.3	362
29	Chemotherapy-Induced Depletion of OCT4-Positive Cancer Stem Cells in a Mouse Model of Malignant Testicular Cancer. Cell Reports, 2017, 21, 1896-1909.	6.4	42
30	Cycling in the Cell Fate Landscape. Current Topics in Developmental Biology, 2016, 116, 153-165.	2.2	3
31	A timecourse analysis of systemic and gonadal effects of temperature on sexual development of the red-eared slider turtle Trachemys scripta elegans. Developmental Biology, 2016, 420, 166-177.	2.0	91
32	A grafted ovarian fragment rescues host fertility after chemotherapy. Molecular Human Reproduction, 2016, 22, 1-10.	2.8	14
33	Left-Biased Spermatogenic Failure in 129/SvJ Dnd1Ter/+ Mice Correlates with Differences in Vascular Architecture, Oxygen Availability, and Metabolites1. Biology of Reproduction, 2015, 93, 78.	2.7	8
34	Cell fate commitment during mammalian sex determination. Current Opinion in Genetics and Development, 2015, 32, 144-152.	3.3	92
35	Macrophages Contribute to the Spermatogonial Niche in the Adult Testis. Cell Reports, 2015, 12, 1107-1119.	6.4	228
36	Yolk-sac–derived macrophages regulate fetal testis vascularization and morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2384-93.	7.1	155

#	Article	IF	CITATIONS
37	The Minimalist Y. Science, 2014, 343, 32-33.	12.6	1
38	Ovarian epithelium regeneration by Lgr5+ cells. Nature Cell Biology, 2014, 16, 743-744.	10.3	14
39	Predetermination of sexual fate in a turtle with temperature-dependent sex determination. Developmental Biology, 2014, 386, 264-271.	2.0	48
40	Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Developmental Biology, 2013, 383, 295-306.	2.0	53
41	Fine Time Course Expression Analysis Identifies Cascades of Activation and Repression and Maps a Putative Regulator of Mammalian Sex Determination. PLoS Genetics, 2013, 9, e1003630.	3.5	83
42	Testosterone Levels Influence Mouse Fetal Leydig Cell Progenitors Through Notch Signaling1. Biology of Reproduction, 2013, 88, 91.	2.7	64
43	Testicular teratomas: an intersection of pluripotency, differentiation and cancer biology. International Journal of Developmental Biology, 2013, 57, 201-210.	0.6	41
44	Temporal Transcriptional Profiling of Somatic and Germ Cells Reveals Biased Lineage Priming of Sexual Fate in the Fetal Mouse Gonad. PLoS Genetics, 2012, 8, e1002575.	3.5	251
45	Testis development requires the repression of Wnt4 by Fgf signaling. Developmental Biology, 2012, 370, 24-32.	2.0	161
46	Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads. PLoS ONE, 2012, 7, e47238.	2.5	38
47	Temporal Differences in Granulosa Cell Specification in the Ovary Reflect Distinct Follicle Fates in Mice1. Biology of Reproduction, 2012, 86, 37.	2.7	210
48	Two distinct origins for Leydig cell progenitors in the fetal testis. Developmental Biology, 2011, 352, 14-26.	2.0	156
49	Regulation of male germ cell cycle arrest and differentiation by DND1 is modulated by genetic background. Development (Cambridge), 2011, 138, 23-32.	2.5	89
50	BAX-mediated cell death affects early germ cell loss and incidence of testicular teratomas in Dnd1 mice. Developmental Biology, 2009, 328, 377-383.	2.0	69
51	Elucidation of the transcription network governing mammalian sex determination by exploiting strain-specific susceptibility to sex reversal. Genes and Development, 2009, 23, 2521-2536.	5.9	65
52	Gonad Morphogenesis in Vertebrates: Divergent Means to a Convergent End. Annual Review of Cell and Developmental Biology, 2009, 25, 457-482.	9.4	144
53	Sex Chromatin Staining in Amnion Cells. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5079-pdb.prot5079.	0.3	2
54	Stabilization of β-catenin in XY gonads causes male-to-female sex-reversal. Human Molecular Genetics, 2008, 17, 2949-2955.	2.9	304

#	Article	IF	CITATIONS
55	Notch signaling maintains Leydig progenitor cells in the mouse testis. Development (Cambridge), 2008, 135, 3745-3753.	2.5	119
56	Preparing Recombinant Gonad Organ Cultures. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5078-pdb.prot5078.	0.3	6
57	The Battle of the Sexes: Opposing Pathways in Sex Determination. Novartis Foundation Symposium, 2008, , 187-202.	1.1	25
58	Investigating the Role of Beta-Catenin in Sex Determination Biology of Reproduction, 2008, 78, 189-190.	2.7	2
59	Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16558-16563.	7.1	164
60	A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expression Patterns, 2007, 7, 680-699.	0.8	125
61	FGF9 promotes survival of germ cells in the fetal testis. Development (Cambridge), 2006, 133, 1519-1527.	2.5	103
62	Fgf9 and Wnt4 Act as Antagonistic Signals to Regulate Mammalian Sex Determination. PLoS Biology, 2006, 4, e187.	5.6	469
63	The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature, 2005, 435, 360-364.	27.8	330
64	Disrupted gonadogenesis and male-to-female sex reversal in <i>Pod1</i> knockout mice. Development (Cambridge), 2004, 131, 4095-4105.	2.5	148
65	Frank Lillie's freemartin: Illuminating the pathway to 21 st century reproductive endocrinology. The Journal of Experimental Zoology, 2004, 301A, 853-856.	1.4	29
66	Cell proliferation is necessary for the determination of male fate in the gonad. Developmental Biology, 2003, 258, 264-276.	2.0	132
67	<i>Pdgfr-α</i> mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes and Development, 2003, 17, 800-810.	5.9	339
68	Divergent Vascular Mechanisms Downstream of Sry Establish the Arterial System in the XY Gonad. Developmental Biology, 2002, 244, 418-428.	2.0	169
69	Male-to-Female Sex Reversal in Mice Lacking Fibroblast Growth Factor 9. Cell, 2001, 104, 875-889.	28.9	526
70	Sry and the testis: Molecular pathways of organogenesis. , 1998, 281, 494-500.		16
71	SEX IN THE 90s:SRYand the Switch to the Male Pathway. Annual Review of Physiology, 1998, 60, 497-523.	13.1	131
72	Sertoli Cells of the Mouse Testis Originate from the Coelomic Epithelium. Developmental Biology, 1998, 203, 323-333.	2.0	392

#	Article	IF	CITATIONS
73	Male-specific cell migration into the developing gonad. Current Biology, 1997, 7, 958-968.	3.9	324
74	Deletion of Y chromosome sequences located outside the testis determining region can cause XY female sex reversal. Nature Genetics, 1993, 5, 301-307.	21.4	103
75	A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990, 346, 245-250.	27.8	1,552
76	Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 1990, 348, 450-452.	27.8	801