Alex Bossers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547687/publications.pdf Version: 2024-02-01

		101543	118850
108	4,468	36	62
papers	citations	h-index	g-index
113	113	113	3838
all docs	docs citations	times ranked	citing authors

ALEY ROSSEDS

#	Article	IF	CITATIONS
1	Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature, 1997, 388, 285-288.	27.8	259
2	Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO Journal, 2000, 19, 4425-4430.	7.8	254
3	Abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nature Microbiology, 2018, 3, 898-908.	13.3	230
4	Scrapie susceptibility-linked polymorphisms modulate the in vitro conversion of sheep prion protein to protease-resistant forms. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4931-4936.	7.1	169
5	Enzymatic Degradation of Prion Protein in Brain Stem from Infected Cattle and Sheep. Journal of Infectious Diseases, 2003, 188, 1782-1789.	4.0	140
6	Classical swine fever virus (CSFV) envelope glycoprotein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. Journal of General Virology, 1996, 77, 2737-2745.	2.9	128
7	State-of-the-art review of goat TSE in the European Union, with special emphasis onPRNPgenetics and epidemiology. Veterinary Research, 2009, 40, 48.	3.0	119
8	Susceptibility of Sheep for Scrapie as Assessed by In Vitro Conversion of Nine Naturally Occurring Variants of PrP. Journal of Virology, 2000, 74, 1407-1414.	3.4	114
9	Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of sheep. BMC Veterinary Research, 2006, 2, 19.	1.9	113
10	Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics, 2017, 18, 241.	2.8	112
11	Discrimination between Scrapie and Bovine Spongiform Encephalopathy in Sheep by Molecular Size, Immunoreactivity, and Glycoprofile of Prion Protein. Journal of Clinical Microbiology, 2004, 42, 972-980.	3.9	110
12	Early life microbial colonization of the gut and intestinal development differ between genetically divergent broiler lines. BMC Genomics, 2015, 16, 418.	2.8	107
13	Identification of prion protein gene polymorphisms in goats from Italian scrapie outbreaks. Journal of General Virology, 2006, 87, 1029-1033.	2.9	95
14	TSE pathogenesis in cattle and sheep. Veterinary Research, 2008, 39, 24.	3.0	87
15	Patterns of community assembly in the developing chicken microbiome reveal rapid primary succession. MicrobiologyOpen, 2019, 8, e00821.	3.0	82
16	Resistance to Chronic Wasting Disease in Transgenic Mice Expressing a Naturally Occurring Allelic Variant of Deer Prion Protein. Journal of Virology, 2007, 81, 4533-4539.	3.4	75
17	The Genome of Winter Moth (<i>Operophtera brumata</i>) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332.	2.5	70
18	Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016. Emerging Infectious Diseases, 2017, 23, 1974-1981.	4.3	70

#	Article	IF	CITATIONS
19	Complete genome sequence and taxonomic position of anguillid herpesvirus 1. Journal of General Virology, 2010, 91, 880-887.	2.9	68
20	Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. Environment International, 2020, 143, 105971.	10.0	66
21	Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance, 2015, 20, .	7.0	65
22	Caprine prion gene polymorphisms are associated with decreased incidence of classical scrapie in goat herds in the United Kingdom. Veterinary Research, 2011, 42, 110.	3.0	63
23	The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. Journal of Antimicrobial Chemotherapy, 2019, 74, 865-876.	3.0	63
24	Characterization of Epidemic Inc11-lÎ ³ Plasmids Harboring Ambler Class A and C Genes in Escherichia coli and Salmonella enterica from Animals and Humans. Antimicrobial Agents and Chemotherapy, 2015, 59, 5357-5365.	3.2	62
25	Pathogenesis of bovine spongiform encephalopathy in sheep. Archives of Virology, 2008, 153, 445-453.	2.1	61
26	Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017. Emerging Infectious Diseases, 2018, 24, 770-773.	4.3	61
27	Human variant Creutzfeldt-Jakob disease and sheep scrapie PrPres detection using seeded conversion of recombinant prion protein. Protein Engineering, Design and Selection, 2009, 22, 515-521.	2.1	59
28	Clinical microbiology of <i>Coxiella burnetii</i> and relevant aspects for the diagnosis and control of the zoonotic disease Q fever. Veterinary Quarterly, 2013, 33, 148-160.	6.7	57
29	Associations between antimicrobial use and the faecal resistome on broiler farms from nine European countries. Journal of Antimicrobial Chemotherapy, 2019, 74, 2596-2604.	3.0	49
30	Role of the Goat K222-PrPC Polymorphic Variant in Prion Infection Resistance. Journal of Virology, 2014, 88, 2670-2676.	3.4	48
31	Full-Genome Sequence of Influenza A(H5N8) Virus in Poultry Linked to Sequences of Strains from Asia, the Netherlands, 2014. Emerging Infectious Diseases, 2015, 21, 872-874.	4.3	47
32	PrP genotype frequencies of the most dominant sheep breed in a country free from scrapie. Archives of Virology, 1999, 144, 829-834.	2.1	42
33	Comparative genomic analysis of twelve Streptococcus suis (pro)phages. Genomics, 2013, 101, 336-344.	2.9	41
34	Genetic variability of the PRNP gene in goat breeds from Northern and Southern Italy. Journal of Applied Microbiology, 2008, 104, 1782-1789.	3.1	39
35	Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance. BMC Veterinary Research, 2010, 6, 25.	1.9	39
36	Low frequency of the scrapie resistance-associated allele and presence of lysine-171 allele of the prion protein gene in Italian Biellese ovine breed. Journal of General Virology, 2004, 85, 3165-3172.	2.9	38

#	Article	IF	CITATIONS
37	Genomic and functional characterisation of IncX3 plasmids encoding blaSHV-12 in Escherichia coli from human and animal origin. Scientific Reports, 2018, 8, 7674.	3.3	38
38	Mapping of possible prion protein self-interaction domains using peptide arrays. BMC Biochemistry, 2007, 8, 6.	4.4	36
39	Major differential gene regulation in Coxiella burnetii between in vivo and in vitro cultivation models. BMC Genomics, 2015, 16, 953.	2.8	34
40	Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study. Environment International, 2020, 143, 105939.	10.0	33
41	Genomic evolution of antimicrobial resistance in Escherichia coli. Scientific Reports, 2021, 11, 15108.	3.3	33
42	Proteinase K-Resistant Material in ARR/VRQ Sheep Brain Affected with Classical Scrapie Is Composed Mainly of VRQ Prion Protein. Journal of Virology, 2011, 85, 12537-12546.	3.4	31
43	Incl shufflons: Assembly issues in the next-generation sequencing era. Plasmid, 2015, 80, 111-117.	1.4	30
44	Metagenomics-Based Approach to Source-Attribution of Antimicrobial Resistance Determinants – Identification of Reservoir Resistome Signatures. Frontiers in Microbiology, 2020, 11, 601407.	3.5	29
45	Eradication of scrapie with selective breeding: are we nearly there?. BMC Veterinary Research, 2010, 6, 24.	1.9	28
46	Plasmids of Distinct IncK Lineages Show Compatible Phenotypes. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	28
47	Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics, 2014, 15, 59.	2.8	27
48	Effect of Q ₂₁₁ and K ₂₂₂ <i>PRNP</i> Polymorphic Variants in the Susceptibility of Goats to Oral Infection With Goat Bovine Spongiform Encephalopathy. Journal of Infectious Diseases, 2015, 212, 664-672.	4.0	27
49	Enterobacter cloacae Complex Isolated from Shrimps from Vietnam Carrying <i>bla</i> _{IMI-1} Resistant to Carbapenems but Not Cephalosporins. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	27
50	Targeted metagenomics reveals inferior resilience of farm soil resistome compared to soil microbiome after manure application. Science of the Total Environment, 2021, 770, 145399.	8.0	27
51	Genome Plasticity and Polymorphisms in Critical Genes Correlate with Increased Virulence of Dutch Outbreak-Related Coxiella burnetii Strains. Frontiers in Microbiology, 2017, 8, 1526.	3.5	26
52	Applicability of three anti-PrP peptide sera including staining of tonsils and brainstem of sheep with scrapie. Microscopy Research and Technique, 2000, 50, 32-39.	2.2	25
53	Differentiation of ruminant transmissible spongiform encephalopathy isolate types, including bovine spongiform encephalopathy and CH1641 scrapie. Journal of General Virology, 2011, 92, 222-232.	2.9	25
54	Genetic relationship between poultry and wild bird viruses during the highly pathogenic avian influenza H5N6 epidemic in the Netherlands, 2017–2018. Transboundary and Emerging Diseases, 2019, 66, 1370-1378.	3.0	24

#	Article	IF	CITATIONS
55	Prion Protein and scrapie susceptibility. Veterinary Quarterly, 1997, 19, 101-105.	6.7	23
56	Characterization of goat prions demonstrates geographical variation of scrapie strains in Europe and reveals the composite nature of prion strains. Scientific Reports, 2020, 10, 19.	3.3	22
57	Genetic characterization of an atypical Schmallenberg virus isolated from the brain of a malformed lamb. Virus Genes, 2013, 47, 505-514.	1.6	21
58	Novel Carbapenemases FLC-1 and IMI-2 Encoded by an Enterobacter cloacae Complex Isolated from Food Products. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	21
59	Emergence and Selection of a Highly Pathogenic Avian Influenza H7N3 Virus. Journal of Virology, 2020, 94, .	3.4	20
60	Complete Genome Sequences of Incl1 Plasmids Carrying Extended-Spectrum β-Lactamase Genes. Genome Announcements, 2014, 2, .	0.8	19
61	Gene Expression Profiling and Association with Prion-Related Lesions in the Medulla Oblongata of Symptomatic Natural Scrapie Animals. PLoS ONE, 2011, 6, e19909.	2.5	19
62	Cell-Free Propagation of Coxiella burnetii Does Not Affect Its Relative Virulence. PLoS ONE, 2015, 10, e0121661.	2.5	19
63	Sheep scrapie susceptibility-linked polymorphisms do not modulate the initial binding of cellular to disease-associated prion protein prior to conversion. Journal of General Virology, 2005, 86, 2627-2634.	2.9	18
64	<scp>TSE</scp> strain differentiation in mice by immunohistochemical <scp>PrP^{Sc}</scp> profiles and triplex <scp>W</scp> estern blot. Neuropathology and Applied Neurobiology, 2015, 41, 756-779.	3.2	18
65	Circulation of low pathogenic avian influenza (LPAI) viruses in wild birds and poultry in the Netherlands, 2006–2016. Scientific Reports, 2019, 9, 13681.	3.3	18
66	Four Independent Molecular Prion Protein Parameters for Discriminating New Cases of C, L, and H Bovine Spongiform Encephalopathy in Cattle. Journal of Clinical Microbiology, 2011, 49, 3026-3028.	3.9	16
67	Enhanced Virulence of Sheep-Passaged Bovine Spongiform Encephalopathy Agent Is Revealed by Decreased Polymorphism Barriers in Prion Protein Conversion Studies. Journal of Virology, 2014, 88, 2903-2912.	3.4	16
68	First Complete Genome Sequence of the Dutch Veterinary <i>Coxiella burnetii</i> Strain NL3262, Originating from the Largest Global Q Fever Outbreak, and Draft Genome Sequence of Its Epidemiologically Linked Chronic Human Isolate NLhu3345937. Genome Announcements, 2016, 4, .	0.8	16
69	The shufflon of Incl1 plasmids is rearranged constantly during different growth conditions. Plasmid, 2019, 102, 51-55.	1.4	16
70	Mycoplasma detection by triplex real-time PCR in bronchoalveolar lavage fluid from bovine respiratory disease complex cases. BMC Veterinary Research, 2017, 13, 97.	1.9	15
71	Spread of Highly Pathogenic Avian Influenza (HPAI) H5N5 Viruses in Europe in 2016–2017 Appears Related to the Timing of Reassortment Events. Viruses, 2019, 11, 501.	3.3	14
72	Variation in the prion protein sequence in Dutch goat breeds. Journal of Animal Breeding and Genetics, 2016, 133, 366-374.	2.0	13

#	Article	IF	CITATIONS
73	Evaluation of a multiplex real-time PCR for detection of four bacterial agents commonly associated with bovine respiratory disease in bronchoalveolar lavage fluid. BMC Veterinary Research, 2017, 13, 221.	1.9	13
74	An observational field study of the cloacal microbiota in adult laying hens with and without access to an outdoor range. Animal Microbiome, 2020, 2, 28.	3.8	13
75	Age Matters: Community Assembly in the Pig Fecal Microbiome in the First Month of Life. Frontiers in Microbiology, 2021, 12, 564408.	3.5	13
76	Medulla oblongata transcriptome changes during presymptomatic natural scrapie and their association with prion-related lesions. BMC Genomics, 2012, 13, 399.	2.8	12
77	Protecting effect of PrP codons M142 and K222 in goats orally challenged with bovine spongiform encephalopathy prions. Veterinary Research, 2017, 48, 52.	3.0	12
78	Modelling of strategies for genetic control of scrapie in sheep: The importance of population structure. PLoS ONE, 2018, 13, e0195009.	2.5	12
79	The effect of maternal antibiotic use in sows on intestinal development in offspring. Journal of Animal Science, 2020, 98, .	0.5	12
80	Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus. Veterinary Research, 2016, 47, 99.	3.0	11
81	Four types of scrapie in goats differentiated from each other and bovine spongiform encephalopathy by biochemical methods. Veterinary Research, 2019, 50, 97.	3.0	11
82	Addressing Learning Needs on the Use of Metagenomics in Antimicrobial Resistance Surveillance. Frontiers in Public Health, 2020, 8, 38.	2.7	11
83	PrP Allelic Variants Associated with Natural Scrapie. , 1996, , 294-305.		11
84	In vitro conversion of normal prion protein into pathologic isoforms. Clinics in Laboratory Medicine, 2003, 23, 227-247.	1.4	10
85	PrP genotypes in a pedigree flock of Santa Inês sheep. Veterinary Record, 2007, 160, 336-337.	0.3	10
86	Prion protein self-interactions: A gateway to novel therapeutic strategies?. Vaccine, 2010, 28, 7810-7823.	3.8	10
87	Genomic and phylogenetic characterization of Shuni virus. Archives of Virology, 2014, 159, 2883-2892.	2.1	10
88	Factors Influencing the Succession of the Fecal Microbiome in Broilers. Livestock Science, 2021, 247, 104486.	1.6	10
89	Prion protein self-peptides modulate prion interactions and conversion. BMC Biochemistry, 2009, 10, 29.	4.4	9
90	Prion Type-Dependent Deposition of <i>PRNP</i> Allelic Products in Heterozygous Sheep. Journal of Virology, 2016, 90, 805-812.	3.4	9

0

#	Article	IF	CITATIONS
91	Q Fever Diagnosis and Control in Domestic Ruminants. Developments in Biologicals, 2013, 135, 183-189.	0.5	9
92	Sheep prions with molecular properties intermediate between classical scrapie, BSE and CH1641–scrapie. Prion, 2014, 8, 296-305.	1.8	8
93	Temporal Dynamics of Cloacal Microbiota in Adult Laying Chickens With and Without Access to an Outdoor Range. Frontiers in Microbiology, 2020, 11, 626713.	3.5	8
94	Whole genome PCR scanning (WGPS) of Coxiella burnetii strains from ruminants. Microbes and Infection, 2015, 17, 772-775.	1.9	7
95	Limited changes in the fecal microbiome composition of laying hens after oral inoculation with wild duck feces. Poultry Science, 2019, 98, 6542-6551.	3.4	7
96	Immunolabelling of nonâ€phosphorylated neurofilament indicates damage of spinal cord axons in TSEâ€infected goats. Veterinary Record, 2016, 178, 141-141.	0.3	6
97	Paramyxovirus-based production of Rift Valley fever virus replicon particles. Journal of General Virology, 2014, 95, 2638-2648.	2.9	5
98	Molecular analysis of three Clostridium difficile strain genomes isolated from pig farm-related samples. Anaerobe, 2017, 48, 224-231.	2.1	4
99	Incompatibility and phylogenetic relationship of I-complex plasmids. Plasmid, 2020, 109, 102502.	1.4	4
100	Development of a DNA-based microarray for the detection of zoonotic pathogens in rodent species. Molecular and Cellular Probes, 2015, 29, 427-437.	2.1	3
101	EU-approved rapid tests might underestimate bovine spongiform encephalopathy infection in goats. Journal of Veterinary Diagnostic Investigation, 2017, 29, 232-236.	1.1	3
102	Mapping Functional Prion–Prion Protein Interaction Sites Using Prion Protein Based Peptide-Arrays. Methods in Molecular Biology, 2009, 570, 257-271.	0.9	3
103	Prion protein self-interaction in prion disease therapy approaches. Veterinary Quarterly, 2011, 31, 115-128.	6.7	2
104	Complete Genome Sequence of the Streptococcus suis Temperate Bacteriophage ϕNJ2. Genome Announcements, 2013, 1, .	0.8	2
105	Chlamydia caviae in Swiss and Dutch Guinea Pigs—Occurrence and Genetic Diversity. Pathogens, 2021, 10, 1230.	2.8	2
106	Indoor airborne microbiota composition associated with asthma and atopy in rural children. , 2018, , .		2
107	Prion Protein Self-Peptides. , 2013, , .		0