Julia Gorelik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547365/publications.pdf

Version: 2024-02-01

331670 377865 1,845 37 21 34 citations h-index g-index papers 38 38 38 2697 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nature Medicine, 2014, 20, 624-632.	30.7	203
2	FRET biosensor uncovers cAMP nano-domains at \hat{l}^2 -adrenergic targets that dictate precise tuning of cardiac contractility. Nature Communications, 2017, 8, 15031.	12.8	166
3	Dynamic assembly of surface structures in living cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5819-5822.	7.1	162
4	Ion Channels in Small Cells and Subcellular Structures Can Be Studied with a Smart Patch-Clamp System. Biophysical Journal, 2002, 83, 3296-3303.	0.5	116
5	Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circulation Research, 2016, 119, 944-955.	4.5	101
6	Direct Evidence for Microdomain-Specific Localization and Remodeling of Functional L-Type Calcium Channels in Rat and Human Atrial Myocytes. Circulation, 2015, 132, 2372-2384.	1.6	96
7	Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis. ACS Nano, 2016, 10, 3214-3221.	14.6	95
8	Nanoscale visualization of functional adhesion/excitability nodes at the intercalated disc. Nature Communications, 2016, 7, 10342.	12.8	76
9	Heart and bile acids – Clinical consequences of altered bile acid metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1345-1355.	3.8	75
10	The use of scanning ion conductance microscopy to image A6 cells. Molecular and Cellular Endocrinology, 2004, 217, 101-108.	3.2	74
11	Microtubule-Dependent Mitochondria Alignment Regulates Calcium Release in Response to Nanomechanical Stimulus in Heart Myocytes. Cell Reports, 2016, 14, 140-151.	6.4	55
12	T-tubule remodelling disturbs localized \hat{l}^2 2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovascular Research, 2017, 113, 770-782.	3.8	53
13	Investigation of cardiac fibroblasts using myocardial slices. Cardiovascular Research, 2018, 114, 77-89.	3.8	52
14	Distinct submembrane localisation compartmentalises cardiac NPR1 and NPR2 signalling to cGMP. Nature Communications, 2018, 9, 2446.	12.8	52
15	Cardiomyocyte Membrane Structure and cAMP Compartmentation Produce Anatomical Variation in \hat{I}^2 2AR-cAMP Responsiveness in Murine Hearts. Cell Reports, 2018, 23, 459-469.	6.4	51
16	Spatial control of the \hat{l}^2AR system in heart failure: the transverse tubule and beyond. Cardiovascular Research, 2013, 98, 216-224.	3.8	49
17	Functional interaction between charged nanoparticles and cardiac tissue: a new paradigm for cardiac arrhythmia?. Nanomedicine, 2013, 8, 725-737.	3.3	47
18	Fetal cardiac dysfunction in intrahepatic cholestasis of pregnancy is associated with elevated serum bile acid concentrations. Journal of Hepatology, 2021, 74, 1087-1096.	3.7	38

#	Article	IF	CITATIONS
19	Exosomes: From Potential Culprits to New Therapeutic Promise in the Setting of Cardiac Fibrosis. Cells, 2020, 9, 592.	4.1	35
20	The protective effect of ursodeoxycholic acid in an inÂvitro model of the human fetal heart occurs via targeting cardiac fibroblasts. Progress in Biophysics and Molecular Biology, 2016, 120, 149-163.	2.9	34
21	\hat{l}^2 3-Adrenoceptor redistribution impairs NO/cGMP/PDE2 signalling in failing cardiomyocytes. ELife, 2020, 9, .	6.0	28
22	Angular Approach Scanning Ion Conductance Microscopy. Biophysical Journal, 2016, 110, 2252-2265.	0.5	23
23	Ankyrin-G mediates targeting of both Na+ and KATP channels to the rat cardiac intercalated disc. ELife, 2020, 9, .	6.0	23
24	Esmolol is antiarrhythmic in doxorubicin-induced arrhythmia in cultured cardiomyocytes - determination by novel rapid cardiomyocyte assay. FEBS Letters, 2003, 548, 74-78.	2.8	21
25	Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophysical Reviews, 2015, 7, 43-62.	3.2	21
26	Correlative SICMâ€FCM reveals changes in morphology and kinetics of endocytic pits induced by diseaseâ€associated mutations in dynamin. FASEB Journal, 2019, 33, 8504-8518.	0.5	21
27	Short-term angiotensin II treatment regulates cardiac nanomechanics <i>via</i> modifications. Nanoscale, 2020, 12, 16315-16329.	5.6	15
28	Nanoscale regulation of L-type calcium channels differentiates between ischemic and dilated cardiomyopathies EBioMedicine, 2020, 57, 102845.	6.1	15
29	Partial Mechanical Unloading of the Heart Disrupts L-Type Calcium Channel and Beta-Adrenoceptor Signaling Microdomains. Frontiers in Physiology, 2018, 9, 1302.	2.8	11
30	Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of \hat{I}^2 2AR-cAMP Signalling. Cells, 2020, 9, 2275.	4.1	10
31	Studying signal compartmentation in adult cardiomyocytes. Biochemical Society Transactions, 2020, 48, 61-70.	3.4	9
32	Nanoscale, Voltage-Driven Application of Bioactive Substances onto Cells with Organized Topography. Biophysical Journal, 2016, 110, 141-146.	0.5	8
33	A Software Tool for High-Throughput Real-Time Measurement of Intensity-Based Ratio-Metric FRET. Cells, 2019, 8, 1541.	4.1	8
34	Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells, 2021, 10, 2456.	4.1	2
35	STORM and TEM Identify the Cardiac Ephapse: An Intercalated Disk Nanodomain with Previously Unanticipated Functions in Cardiac Conduction. Microscopy and Microanalysis, 2017, 23, 1110-1111.	0.4	0
36	PHARMACOLOGICAL CHARACTERISATION OF EMBRYONIC STEM CELL-DERIVED CARDIOMYOCYTE CULTURES. , 2005, , 139-147.		0

#	Article	IF	CITATIONS
37	Junctophillin-2: Coupling Hopes for Cardiac Gene Therapy to Gene Transcription. Circulation Research, 2022, 130, 1318-1320.	4.5	0