Katherine M. Buckley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547302/publications.pdf

Version: 2024-02-01

40 papers

4,214 citations

304743 22 h-index 315739 38 g-index

46 all docs

46 docs citations

46 times ranked

4380 citing authors

#	Article	IF	CITATIONS
1	Immunological Diversity Is a Cornerstone of Organismal Defense and Allorecognition across Metazoa. Journal of Immunology, 2022, 208, 203-211.	0.8	6
2	The evolution of innate immune receptors: investigating the diversity, distribution, and phylogeny of immune recognition across eukaryotes. Immunogenetics, 2022, 74, 1-4.	2.4	3
3	Bioinformatics Approaches for Analyzing Multigene Families Encoding Immune Receptors. Methods in Molecular Biology, 2022, 2421, 151-169.	0.9	O
4	Mitochondrial copper and phosphate transporter specificity was defined early in the evolution of eukaryotes. ELife, $2021,10,10$	6.0	19
5	Sensing the world and its dangers: An evolutionary perspective in neuroimmunology. ELife, 2021, 10, .	6.0	29
6	Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluidâ€"Novel Insights into Echinodermata Biology. Biology, 2021, 10, 866.	2.8	6
7	A nomenclature for echinoderm genes. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	4
8	Zinc protection of fertilized eggs is an ancient feature of sexual reproduction in animals. PLoS Biology, 2020, 18, e3000811.	5.6	11
9	Immune activity at the gut epithelium in the larval sea urchin. Cell and Tissue Research, 2019, 377, 469-474.	2.9	23
10	The Axial Organ and the Pharynx Are Sites of Hematopoiesis in the Sea Urchin. Frontiers in Immunology, 2019, 10, 870.	4.8	25
11	Techniques for analyzing gene expression using BAC-based reporter constructs. Methods in Cell Biology, 2019, 151, 197-218.	1.1	7
12	Analysis of immune response in the sea urchin larva. Methods in Cell Biology, 2019, 150, 333-355.	1.1	6
13	Bacterial artificial chromosomes as recombinant reporter constructs to investigate gene expression and regulation in echinoderms. Briefings in Functional Genomics, 2018, 17, 362-371.	2.7	12
14	AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nature Communications, 2018, 9, 1948.	12.8	31
15	Echinodermata: The Complex Immune System in Echinoderms. , 2018, , 409-501.		62
16	Correction to: Echinodermata: The Complex Immune System in Echinoderms. , 2018, , E1-E1.		3
17	Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nature Communications, 2017, 8, 15451.	12.8	216
18	An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response. Frontiers in Immunology, 2017, 8, 1297.	4.8	41

#	Article	lF	Citations
19	IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. ELife, $2017, 6, .$	6.0	57
20	Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunology and Cell Biology, 2016, 94, 861-874.	2.3	78
21	A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Developmental Biology, 2016, 416, 149-161.	2.0	32
22	Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Developmental and Comparative Immunology, 2015, 49, 179-189.	2.3	71
23	The ctenophore genome and the evolutionary origins of neural systems. Nature, 2014, 510, 109-114.	27.8	606
24	Lamprey immunity is far from primitive. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5746-5747.	7.1	20
25	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	21.4	588
26	Dynamic Evolution of Toll-Like Receptor Multigene Families in Echinoderms. Frontiers in Immunology, 2012, 3, 136.	4.8	116
27	Genomics in the Sea Urchin: New Perspectives on a Perennial Model System. , 2012, , 1-15.		0
28	Characterizing Immune Receptors from New Genome Sequences. Methods in Molecular Biology, 2011, 748, 273-298.	0.9	10
29	An Sp185/333 gene cluster from the purple sea urchin and putative microsatellite-mediated gene diversification. BMC Genomics, 2010, 11, 575.	2.8	25
30	Sp185/333: A novel family of genes and proteins involved in the purple sea urchin immune response. Developmental and Comparative Immunology, 2010, 34, 235-245.	2.3	57
31	Highly diversified innate receptor systems and new forms of animal immunity. Seminars in Immunology, 2010, 22, 39-47.	5.6	71
32	Echinoderm Immunity. Advances in Experimental Medicine and Biology, 2010, 708, 260-301.	1.6	134
33	A method for identifying alternative or cryptic donor splice sites within gene and mRNA sequences. Comparisons among sequences from vertebrates, echinoderms and other groups. BMC Genomics, 2009, 10, 318.	2.8	5
34	The 185/333 Gene Family Is a Rapidly Diversifying Host-Defense Gene Cluster in the Purple Sea Urchin Strongylocentrotus purpuratus. Journal of Molecular Biology, 2008, 379, 912-928.	4.2	36
35	Sequence Variations in <i>185/333</i> Messages from the Purple Sea Urchin Suggest Posttranscriptional Modifications to Increase Immune Diversity. Journal of Immunology, 2008, 181, 8585-8594.	0.8	34
36	Distinctive expression patterns of 185/333 genes in the purple sea urchin, Strongylocentrotus purpuratus: an unexpectedly diverse family of transcripts in response to LPS, \hat{l}^2 -1,3-glucan, and dsRNA. BMC Molecular Biology, 2007, 8, 16.	3.0	84

#	Article	IF	CITATIONS
37	Extraordinary diversity among members of the large gene family, 185/333, from the purple sea urchin, Strongylocentrotus purpuratus. BMC Molecular Biology, 2007, 8, 68.	3.0	56
38	The Genome of the Sea Urchin <i>Strongylocentrotus purpuratus</i> . Science, 2006, 314, 941-952.	12.6	1,018
39	The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365.	2.0	513
40	Unexpected diversity displayed in cDNAs expressed by the immune cells of the purple sea urchin, Strongylocentrotus purpuratus. Physiological Genomics, 2006, 26, 134-144.	2.3	64