Cheng Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554712/publications.pdf Version: 2024-02-01

CHENC OIAN

#	Article	IF	CITATIONS
1	Heavy Rainfall Event in Mid-August 2020 in Southwestern China: Contribution of Anthropogenic Forcings and Atmospheric Circulation. Bulletin of the American Meteorological Society, 2022, 103, S111-S117.	3.3	11
2	2021: A Year of Unprecedented Climate Extremes in Eastern Asia, North America, and Europe. Advances in Atmospheric Sciences, 2022, 39, 1598-1607.	4.3	31
3	An Updated Review of Event Attribution Approaches. Journal of Meteorological Research, 2022, 36, 227-238.	2.4	10
4	Extreme temperature indices in Eurasia in a <scp>CMIP6</scp> multiâ€model ensemble: Evaluation and projection. International Journal of Climatology, 2021, 41, 5368-5385.	3.5	36
5	Conditional attribution of climate change and atmospheric circulation contributing to the record-breaking precipitation and temperature event of summer 2020 in southern China. Environmental Research Letters, 2021, 16, 044058.	5.2	30
6	Changes in Temperature Seasonality in China: Human Influences and Internal Variability. Journal of Climate, 2019, 32, 6237-6249.	3.2	24
7	Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Climate Dynamics, 2019, 53, 533-550.	3.8	31
8	Statistical prediction of nonâ€Gaussian climate extremes in urban areas based on the firstâ€order difference method. International Journal of Climatology, 2018, 38, 2889-2898.	3.5	7
9	Linear trends in mean and extreme temperature in Xiongan New Area, China. Atmospheric and Oceanic Science Letters, 2018, 11, 246-254.	1.3	3
10	Human Influence on the Record-breaking Cold Event in January of 2016 in Eastern China. Bulletin of the American Meteorological Society, 2018, 99, S118-S122.	3.3	42
11	Near-Term Projections of Global and Regional Land Mean Temperature Changes Considering Both the Secular Trend and Multidecadal Variability. Journal of Meteorological Research, 2018, 32, 337-350.	2.4	1
12	An alternative multi-model ensemble mean approach for near-term projection. International Journal of Climatology, 2017, 37, 109-122.	3.5	16
13	Variations and changes of annual precipitation in Central Asia over the last century. International Journal of Climatology, 2017, 37, 157-170.	3.5	146
14	Twentieth-Century Trends in the Annual Cycle of Temperature across the Northern Hemisphere. Journal of Climate, 2017, 30, 5755-5773.	3.2	20
15	On trend estimation and significance testing for non-Gaussian and serially dependent data: quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai. Climate Dynamics, 2016, 47, 329-344.	3.8	30
16	Disentangling the urbanization effect, multiâ€decadal variability, and secular trend in temperature in eastern China during 1909–2010. Atmospheric Science Letters, 2016, 17, 177-182.	1.9	14
17	Impact of land use/land cover change on changes in surface solar radiation in eastern China since the reform and opening up. Theoretical and Applied Climatology, 2016, 123, 131-139.	2.8	19
18	Urbanization effects on climatic changes in 24 particular timings of the seasonal cycle in the middle and lower reaches of the Yellow River. Theoretical and Applied Climatology, 2016, 124, 781-791.	2.8	15

CHENG QIAN

#	Article	IF	CITATIONS
19	Human Influences on Changes in the Temperature Seasonality in Mid- to High-Latitude Land Areas. Journal of Climate, 2015, 28, 5908-5921.	3.2	56
20	Two Approaches for Statistical Prediction of Non-Gaussian Climate Extremes: A Case Study of Macao Hot Extremes during 1912–2012. Journal of Climate, 2015, 28, 623-636.	3.2	23
21	Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900–2010. Journal of Climate, 2014, 27, 1210-1222.	3.2	258
22	Climatic changes in the Twenty-four Solar Terms during 1960–2008. Science Bulletin, 2012, 57, 276-286.	1.7	23
23	Changes in seasonal cycle and extremes in China during the period 1960–2008. Advances in Atmospheric Sciences, 2011, 28, 269-283.	4.3	58
24	The role of changes in the annual cycle in earlier onset of climatic spring in northern China. Advances in Atmospheric Sciences, 2011, 28, 284-296.	4.3	45
25	Trends in temperature extremes in association with weather-intraseasonal fluctuations in eastern China. Advances in Atmospheric Sciences, 2011, 28, 297-309.	4.3	44
26	Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Science China Earth Sciences, 2011, 54, 1400-1406.	5.2	19
27	On Changing El Niño: A View from Time-Varying Annual Cycle, Interannual Variability, and Mean State. Journal of Climate, 2011, 24, 6486-6500.	3.2	65
28	Changes in the Amplitude of the Temperature Annual Cycle in China and Their Implication for Climate Change Research. Journal of Climate, 2011, 24, 5292-5302.	3.2	67
29	On multi-timescale variability of temperature in China in modulated annual cycle reference frame. Advances in Atmospheric Sciences, 2010, 27, 1169-1182.	4.3	43
30	On the secular change of spring onset at Stockholm. Geophysical Research Letters, 2009, 36, .	4.0	58
31	Evaluation of AMIP models from CMIP6 in simulating winter surface air temperature trends over Eurasia during 1998–2012 based on dynamical adjustment. Climate Dynamics, 0, , 1.	3.8	1