Huw Colin-York

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5547013/publications.pdf

Version: 2024-02-01

471509 477307 1,119 29 17 29 citations h-index g-index papers 31 31 31 1892 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Quantifying Molecular Dynamics within Complex Cellular Morphologies using LLSMâ€FRAP. Small Methods, 2022, 6, e2200149.	8.6	4
2	T-cell trans-synaptic vesicles are distinct and carry greater effector content than constitutive extracellular vesicles. Nature Communications, $2022,13,.$	12.8	18
3	Astigmatic traction force microscopy (aTFM). Nature Communications, 2021, 12, 2168.	12.8	34
4	Quantitative Methodologies to Dissect Immune Cell Mechanobiology. Cells, 2021, 10, 851.	4.1	2
5	Two-dimensional TIRF-SIM–traction force microscopy (2D TIRF-SIM-TFM). Nature Communications, 2021, 12, 2169.	12.8	31
6	Extended mechanical force measurements using structured illumination microscopy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200151.	3.4	0
7	Quantifying cell-generated forces: Poisson's ratio matters. Communications Physics, 2021, 4, 237.	5.3	22
8	Distinct actin cytoskeleton behaviour in primary and immortalised T-cells. Journal of Cell Science, 2020, 133, .	2.0	28
9	Self-Maintaining CD103+ Cancer-Specific T Cells Are Highly Energetic with Rapid Cytotoxic and Effector Responses. Cancer Immunology Research, 2020, 8, 203-216.	3.4	27
10	Single cell force profiling of human myofibroblasts reveals a biophysical spectrum of cell states. Biology Open, 2020, 9, .	1.2	6
11	Cellular census of human fibrosis defines functionally distinct stromal cell types and states. Nature Communications, 2020, 11, 2768.	12.8	23
12	Quantitative Bio-Imaging Tools to Dissect the Interplay of Membrane and Cytoskeletal Actin Dynamics in Immune Cells. Frontiers in Immunology, 2020, 11, 612542.	4.8	4
13	Simultaneous Quantification of the Interplay Between Molecular Turnover and Cell Mechanics by AFM–FRAP. Small, 2019, 15, e1902202.	10.0	13
14	Not All T Cell Synapses Are Built the Same Way. Trends in Immunology, 2019, 40, 977-980.	6.8	18
15	Spatiotemporally Super-Resolved Volumetric Traction Force Microscopy. Nano Letters, 2019, 19, 4427-4434.	9.1	43
16	Cytoskeletal Control of Antigen-Dependent T Cell Activation. Cell Reports, 2019, 26, 3369-3379.e5.	6.4	68
17	Cytoskeletal actin patterns shape mast cell activation. Communications Biology, 2019, 2, 93.	4.4	35
18	Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Science Advances, 2019, 5, eaay0370.	10.3	22

#	Article	IF	CITATIONS
19	Orchestrated control of filaggrin–actin scaffolds underpins cornification. Cell Death and Disease, 2018, 9, 412.	6.3	42
20	The future of traction force microscopy. Current Opinion in Biomedical Engineering, 2018, 5, 1-5.	3.4	39
21	The 2018 correlative microscopy techniques roadmap. Journal Physics D: Applied Physics, 2018, 51, 443001.	2.8	99
22	Self-organizing actin patterns shape membrane architecture but not cell mechanics. Nature Communications, 2017, 8, 14347.	12.8	99
23	Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy. Journal Physics D: Applied Physics, 2017, 50, 064002.	2.8	62
24	Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation. Science Advances, 2017, 3, e1603032.	10.3	143
25	Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nature Protocols, 2017, 12, 783-796.	12.0	53
26	CalQuo 2: Automated Fourier-space, population-level quantification of global intracellular calcium responses. Scientific Reports, 2017, 7, 5416.	3.3	10
27	Exploring the Potential of Airyscan Microscopy for Live Cell Imaging. Photonics, 2017, 4, 41.	2.0	74
28	Super-Resolved Traction Force Microscopy (STFM). Nano Letters, 2016, 16, 2633-2638.	9.1	86
29	CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses. Scientific Reports, 2015, 5, 16487.	3.3	10