
Benjamin L Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546886/publications.pdf Version: 2024-02-01

RENIAMIN | TUDNED

#	Article	IF	CITATIONS
1	Global Desertification: Building a Science for Dryland Development. Science, 2007, 316, 847-851.	6.0	2,072
2	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
3	Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 2007, 447, 80-82.	13.7	867
4	Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 2014, 505, 543-545.	13.7	743
5	Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 449-469.	1.8	617
6	Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 2011, 92, 1616-1625.	1.5	478
7	<scp>CTFS</scp> â€Forest <scp>GEO</scp> : a worldwide network monitoring forests in an era of global change. Global Change Biology, 2015, 21, 528-549.	4.2	473
8	Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5064-5068.	3.3	409
9	Phosphorus solubilization in rewetted soils. Nature, 2001, 411, 258-258.	13.7	352
10	Phosphorusâ€31 Nuclear Magnetic Resonance Spectral Assignments of Phosphorus Compounds in Soil NaOH–EDTA Extracts. Soil Science Society of America Journal, 2003, 67, 497-510.	1.2	350
11	Extraction of soil organic phosphorus. Talanta, 2005, 66, 294-306.	2.9	345
12	Understanding ecosystem retrogression. Ecological Monographs, 2010, 80, 509-529.	2.4	342
13	Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology, 2010, 98, 1074-1083.	1.9	308
14	Plant-soil feedback and the maintenance of diversity in Mediterranean-climate shrublands. Science, 2017, 355, 173-176.	6.0	299
15	Resource partitioning for soil phosphorus: a hypothesis. Journal of Ecology, 2008, 96, 698-702.	1.9	277
16	Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biology and Biochemistry, 2007, 39, 1770-1781.	4.2	268
17	The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 2020, 6, eaax8787.	4.7	263
18	Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrientâ€acquisition strategies along a 2â€millionâ€year dune chronosequence. Journal of Ecology, 2014, 102, 396-410.	1.9	253

#	Article	IF	CITATIONS
19	Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 2016, 86, 172-189.	2.4	253
20	Soil Organic Phosphorus Transformations During Pedogenesis. Ecosystems, 2007, 10, 1166-1181.	1.6	252
21	Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science, 2015, 20, 83-90.	4.3	251
22	Long-Term Change in the Nitrogen Cycle of Tropical Forests. Science, 2011, 334, 664-666.	6.0	250
23	The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled approach. Science of the Total Environment, 2005, 344, 5-14.	3.9	244
24	Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature, 2018, 555, 367-370.	13.7	242
25	Environmental filtering explains variation in plant diversity along resource gradients. Science, 2014, 345, 1602-1605.	6.0	238
26	Proteaceae from severely phosphorusâ€impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorusâ€useâ€efficiency. New Phytologist, 2012, 196, 1098-1108.	3.5	225
27	Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 2011, 103, 297-315.	1.7	224
28	Variation in pH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils. Applied and Environmental Microbiology, 2010, 76, 6485-6493.	1.4	223
29	Plant diversity increases with the strength of negative density dependence at the global scale. Science, 2017, 356, 1389-1392.	6.0	222
30	β-Glucosidase activity in pasture soils. Applied Soil Ecology, 2002, 20, 157-162.	2.1	221
31	Phosphorus Compounds in Sequential Extracts of Animal Manures:Â Chemical Speciation and a Novel Fractionation Procedure. Environmental Science & Technology, 2004, 38, 6101-6108.	4.6	221
32	Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biology and Biochemistry, 2002, 34, 27-35.	4.2	211
33	Tropical wetlands: A missing link in the global carbon cycle?. Global Biogeochemical Cycles, 2014, 28, 1371-1386.	1.9	210
34	The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. Biogeochemistry, 2014, 117, 115-130.	1.7	207
35	Soil resources and topography shape local tree community structure in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122532.	1.2	201
36	Relating Soil Phosphorus to Dissolved Phosphorus in Runoff: A Single Extraction Coefficient for Water Quality Modeling. Journal of Environmental Quality, 2005, 34, 572-580.	1.0	200

#	Article	IF	CITATIONS
37	The phosphorus composition of temperate pasture soils determined by NaOH–EDTA extraction and solution 31 P NMR spectroscopy. Organic Geochemistry, 2003, 34, 1199-1210.	0.9	199
38	Tropical tree seedling growth responses to nitrogen, phosphorus and potassium addition. Journal of Ecology, 2012, 100, 309-316.	1.9	199
39	Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology, 2018, 99, 2455-2466.	1.5	197
40	Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants, 2015, 1, .	4.7	191
41	Experimental assessment of nutrient limitation along a 2â€millionâ€year dune chronosequence in the southâ€western Australia biodiversity hotspot. Journal of Ecology, 2012, 100, 631-642.	1.9	189
42	Organic Phosphorus Composition and Potential Bioavailability in Semi-Arid Arable Soils of the Western United States. Soil Science Society of America Journal, 2003, 67, 1168-1179.	1.2	183
43	Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest. Ecology Letters, 2015, 18, 1397-1405.	3.0	183
44	Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment, 2005, 344, 27-36.	3.9	180
45	Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant and Soil, 2013, 367, 225-234.	1.8	176
46	Tree mycorrhizal type predicts withinâ€site variability in the storage and distribution of soil organic matter. Global Change Biology, 2018, 24, 3317-3330.	4.2	167
47	How does pedogenesis drive plant diversity?. Trends in Ecology and Evolution, 2013, 28, 331-340.	4.2	165
48	Sampling, sample treatment and quality assurance issues for the determination of phosphorus species in natural waters and soils. Talanta, 2005, 66, 273-293.	2.9	155
49	Phosphorus Forms and Concentrations in Leachate under Four Grassland Soil Types. Soil Science Society of America Journal, 2000, 64, 1090-1099.	1.2	148
50	Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry, 2003, 35, 187-189.	4.2	143
51	Stem, root, and older leaf N:P ratios are more responsive indicators of soil nutrient availability than new foliage. Ecology, 2014, 95, 2062-2068.	1.5	138
52	Soil organic phosphorus dynamics following perturbation of litter cycling in a tropical moist forest. European Journal of Soil Science, 2010, 61, 48-57.	1.8	134
53	An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 2016, 19, 383-392.	3.0	132
54	Soil carbon loss by experimental warming in a tropical forest. Nature, 2020, 584, 234-237.	13.7	132

#	Article	IF	CITATIONS
55	Ecological succession in a changing world. Journal of Ecology, 2019, 107, 503-509.	1.9	131
56	Carbon stocks in primary and secondary tropical forests in Singapore. Forest Ecology and Management, 2013, 296, 81-89.	1.4	129
57	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	1.6	127
58	Phosphorus Cycling in Wetland Soils. Journal of Environmental Quality, 2005, 34, 1921-1929.	1.0	124
59	Speciesâ€specific responses of foliar nutrients to longâ€ŧerm nitrogen and phosphorus additions in a lowland tropical forest. Journal of Ecology, 2014, 102, 36-44.	1.9	123
60	ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biological Conservation, 2021, 253, 108907.	1.9	122
61	Fungal Community Composition in Neotropical Rain Forests: the Influence of Tree Diversity and Precipitation. Microbial Ecology, 2012, 63, 804-812.	1.4	121
62	Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	120
63	Determination of <i>neo</i> - and <scp>d</scp> - <i>chiro</i> -lnositol Hexakisphosphate in Soils by Solution ³¹ P NMR Spectroscopy. Environmental Science & Technology, 2012, 46, 4994-5002.	4.6	119
64	Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research. Functional Plant Biology, 2013, 40, 531.	1.1	118
65	Recovering Phosphorus from Soil: A Root Solution?. Environmental Science & Technology, 2012, 46, 1977-1978.	4.6	116
66	Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution, 2018, 2, 499-509.	3.4	116
67	Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science, 2021, 372, 63-68.	6.0	115
68	Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls. New Phytologist, 2010, 185, 770-779.	3.5	113
69	Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 2015, 80, 26-33.	4.2	113
70	Using organic phosphorus to sustain pasture productivity: A perspective. Geoderma, 2014, 221-222, 11-19.	2.3	111
71	Soil Development and Nutrient Availability Along a 2ÂMillion-Year Coastal Dune Chronosequence Under Species-Rich Mediterranean Shrubland in Southwestern Australia. Ecosystems, 2015, 18, 287-309.	1.6	110
72	Soil bacterial community succession during longâ€ŧerm ecosystem development. Molecular Ecology, 2013, 22, 3415-3424.	2.0	105

#	Article	IF	CITATIONS
73	Plant responses to fertilization experiments in lowland, speciesâ€rich, tropical forests. Ecology, 2018, 99, 1129-1138.	1.5	105
74	Chemistry and Dynamics of Soil Organic Phosphorus. Agronomy, 0, , 87-121.	0.2	102
75	Transpiration efficiency of a tropical pioneer tree (Ficus insipida) in relation to soil fertility. Journal of Experimental Botany, 2007, 58, 3549-3566.	2.4	101
76	Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agricultural and Forest Meteorology, 2011, 151, 1462-1470.	1.9	101
77	Habitat filtering across tree life stages in tropical forest communities. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130548.	1.2	101
78	Identification of <i>scyllo</i> â€Inositol Phosphates in Soil by Solution Phosphorusâ€31 Nuclear Magnetic Resonance Spectroscopy. Soil Science Society of America Journal, 2004, 68, 802-808.	1.2	100
79	Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry, 2012, 111, 219-237.	1.7	99
80	Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere. European Journal of Soil Science, 2006, 57, 47-57.	1.8	98
81	Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biology and Biochemistry, 2018, 117, 48-55.	4.2	98
82	Soil organic phosphorus in tropical forests: an assessment of the NaOH–EDTA extraction procedure for quantitative analysis by solution ³¹ P NMR spectroscopy. European Journal of Soil Science, 2008, 59, 453-466.	1.8	97
83	Soil organic matter biochemistry and potential susceptibility to climatic change across the forestâ€ŧundra ecotone in the Fennoscandian mountains. Global Change Biology, 2003, 9, 759-772.	4.2	96
84	Pedogenesis, nutrient dynamics, and ecosystem development: the legacy of T.W. Walker and J.K. Syers. Plant and Soil, 2013, 367, 1-10.	1.8	93
85	Optimizing Phosphorus Characterization in Animal Manures by Solution Phosphorusâ€31 Nuclear Magnetic Resonance Spectroscopy. Journal of Environmental Quality, 2004, 33, 757-766.	1.0	91
86	Variable Responses of Lowland Tropical Forest Nutrient Status to Fertilization and Litter Manipulation. Ecosystems, 2012, 15, 387-400.	1.6	91
87	Title is missing!. Soil Science, 2003, 168, 469-478.	0.9	90
88	Phosphorus-31 Nuclear Magnetic Resonance Spectral Assignments of Phosphorus Compounds in Soil NaOH–EDTA Extracts. Soil Science Society of America Journal, 2003, 67, 497.	1.2	89
89	Phosphorus fractionation in lowland tropical rainforest soils in central Panama. Catena, 2010, 82, 118-125.	2.2	88
90	Soil nutrients and dispersal limitation shape compositional variation in secondary tropical forests across multiple scales. Journal of Ecology, 2019, 107, 566-581.	1.9	88

#	Article	IF	CITATIONS
91	Responses of Soil Fungi to Logging and Oil Palm Agriculture in Southeast Asian Tropical Forests. Microbial Ecology, 2015, 69, 733-747.	1.4	87
92	Shortâ€Term Changes in Extractable Inorganic Nutrients during Storage of Tropical Rain Forest Soils. Soil Science Society of America Journal, 2009, 73, 1972-1979.	1.2	86
93	Negative density dependence is stronger in resourceâ€rich environments and diversifies communities when stronger for common but not rare species. Ecology Letters, 2016, 19, 657-667.	3.0	86
94	QUANTIFICATION OF MYO-INOSITOL HEXAKISPHOSPHATE IN ALKALINE SOIL EXTRACTS BY SOLUTION 31P NMR SPECTROSCOPY AND SPECTRAL DECONVOLUTION. Soil Science, 2003, 168, 469-478.	0.9	84
95	Nutrientâ€specific solubility patterns of leaf litter across 41 lowland tropical woody species. Ecology, 2013, 94, 94-105.	1.5	82
96	Changes in Bicarbonateâ€extractable Inorganic and Organic Phosphorus by Drying Pasture Soils. Soil Science Society of America Journal, 2003, 67, 344-350.	1.2	81
97	Physiological and isotopic (<i>l´</i> ¹³ C and <i>l´</i> ¹⁸ O) responses of three tropical tree species to water and nutrient availability. Plant, Cell and Environment, 2009, 32, 1441-1455.	2.8	81
98	Isolating the influence of <scp>pH</scp> on the amounts and forms of soil organic phosphorus. European Journal of Soil Science, 2013, 64, 249-259.	1.8	81
99	Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecological Research, 2018, 33, 149-160.	0.7	81
100	Conifers, Angiosperm Trees, and Lianas: Growth, Whole-Plant Water and Nitrogen Use Efficiency, and Stable Isotope Composition (<i>δ</i> Â13C and <i>δ</i> Â18O) of Seedlings Grown in a Tropical Environment Â. Plant Physiology, 2008, 148, 642-659.	2.3	80
101	Piecewise Disassembly of a Large-Herbivore Community across a Rainfall Gradient: The UHURU Experiment. PLoS ONE, 2013, 8, e55192.	1.1	80
102	Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry, 2011, 104, 147-163.	1.7	78
103	Nitrogen addition alters ectomycorrhizal fungal communities and soil enzyme activities in a tropical montane forest. Fungal Ecology, 2017, 27, 14-23.	0.7	78
104	Soil fertility shapes belowground food webs across a regional climate gradient. Ecology Letters, 2017, 20, 1273-1284.	3.0	78
105	Greater root phosphatase activity in nitrogenâ€fixing rhizobial but not actinorhizal plants with declining phosphorus availability. Journal of Ecology, 2017, 105, 1246-1255.	1.9	77
106	Increasing plant species diversity and extreme species turnover accompany declining soil fertility along a longâ€ŧerm chronosequence in a biodiversity hotspot. Journal of Ecology, 2016, 104, 792-805.	1.9	76
107	Variation in wood nutrients along a tropical soil fertility gradient. New Phytologist, 2016, 211, 440-454.	3.5	76
108	Climate Warming and Soil Carbon in Tropical Forests: Insights from an Elevation Gradient in the Peruvian Andes. BioScience, 2015, 65, 906-921.	2.2	75

#	Article	IF	CITATIONS
109	Temperature sensitivity of soil enzymes along an elevation gradient in the Peruvian Andes. Biogeochemistry, 2016, 127, 217-230.	1.7	75
110	Influence of Phytase Addition to Poultry Diets on Phosphorus Forms and Solubility in Litters and Amended Soils. Journal of Environmental Quality, 2004, 33, 2306-2316.	1.0	74
111	Broiler Diet Modification and Litter Storage. Journal of Environmental Quality, 2005, 34, 1896-1909.	1.0	74
112	Phosphorus in soils and plants $\hat{a} \in \hat{~}$ facing phosphorus scarcity. Plant and Soil, 2016, 401, 1-6.	1.8	74
113	Nitrogen to phosphorus ratio of plant biomass versus soil solution in a tropical pioneer tree, Ficus insipida. Journal of Experimental Botany, 2010, 61, 3735-3748.	2.4	73
114	Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza, 2016, 26, 1-17.	1.3	72
115	Phosphorus Transformations during Decomposition of Wetland Macrophytes. Environmental Science & Technology, 2010, 44, 9265-9271.	4.6	71
116	Evidence for arrested succession in a lianaâ€infested Amazonian forest. Journal of Ecology, 2016, 104, 149-159.	1.9	71
117	Temporal variability in phosphorus transfers: classifying concentration–discharge event dynamics. Hydrology and Earth System Sciences, 2004, 8, 88-97.	1.9	70
118	Biogeochemical cycling of soil phosphorus during natural revegetation of Pinus sylvestris on disused sand quarries in Northwestern Russia. Plant and Soil, 2013, 367, 121-134.	1.8	70
119	The Role of Phosphorus Limitation in Shaping Soil Bacterial Communities and Their Metabolic Capabilities. MBio, 2020, 11, .	1.8	69
120	Stability of hydrolytic enzyme activity and microbial phosphorus during storage of tropical rain forest soils. Soil Biology and Biochemistry, 2010, 42, 459-465.	4.2	68
121	Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytologist, 2010, 186, 957-967.	3.5	68
122	Nutrient Availability in Tropical Rain Forests: The Paradigm of Phosphorus Limitation. Tree Physiology, 2016, , 261-273.	0.9	67
123	The Roots of Diversity: Below Ground Species Richness and Rooting Distributions in a Tropical Forest Revealed by DNA Barcodes and Inverse Modeling. PLoS ONE, 2011, 6, e24506.	1.1	67
124	Contribution of subsurface peat to CO ₂ and CH ₄ fluxes in a neotropical peatland. Global Change Biology, 2011, 17, 2867-2881.	4.2	66
125	Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiology Ecology, 2013, 85, 37-50.	1.3	66
126	Litter manipulation and the soil arthropod community in a lowland tropical rainforest. Soil Biology and Biochemistry, 2013, 62, 5-12.	4.2	65

#	Article	IF	CITATIONS
127	Phosphorus transformations along a largeâ€scale climosequence in arid and semiarid grasslands of northern China. Global Biogeochemical Cycles, 2016, 30, 1264-1275.	1.9	65
128	Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecology Letters, 2019, 22, 1889-1899.	3.0	65
129	Overestimation of Organic Phosphorus in Wetland Soils by Alkaline Extraction and Molybdate Colorimetry. Environmental Science & Technology, 2006, 40, 3349-3354.	4.6	64
130	Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration Â. Plant Physiology, 2011, 157, 372-385.	2.3	64
131	Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia, 2012, 168, 519-531.	0.9	64
132	Variability in potential to exploit different soil organic phosphorus compounds among tropical montane tree species. Functional Ecology, 2015, 29, 121-130.	1.7	64
133	Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm. Biogeosciences, 2015, 12, 6071-6083.	1.3	62
134	Colloidal Phosphorus in Surface Runoff and Water Extracts from Semiarid Soils of the Western United States. Journal of Environmental Quality, 2004, 33, 1464-1472.	1.0	61
135	Organic Phosphorus Sequestration in Subtropical Treatment Wetlands. Environmental Science & Technology, 2006, 40, 727-733.	4.6	61
136	Transpiration modulates phosphorus acquisition in tropical tree seedlings. Tree Physiology, 2011, 31, 878-885.	1.4	61
137	Quantifying Uncertainties in Sequential Chemical Extraction of Soil Phosphorus Using XANES Spectroscopy. Environmental Science & amp; Technology, 2020, 54, 2257-2267.	4.6	61
138	Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biology and Biochemistry, 2017, 112, 258-268.	4.2	60
139	Preconcentration and Separation of Trace Phosphorus Compounds in Soil Leachate. Journal of Environmental Quality, 1999, 28, 1497-1504.	1.0	59
140	An ecosystem approach to biodiversity effects: Carbon pools in a tropical tree plantation. Forest Ecology and Management, 2011, 261, 1614-1624.	1.4	59
141	Phosphorus speciation in temperate basaltic grassland soils by solution ³¹ P NMR spectroscopy. European Journal of Soil Science, 2009, 60, 638-651.	1.8	58
142	Soilâ€based habitat partitioning in understorey palms in lower montane tropical forests. Journal of Biogeography, 2010, 37, 278-292.	1.4	58
143	Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecological Applications, 2015, 25, 2022-2034.	1.8	58
144	Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. ISME Journal, 2018, 12, 2433-2445.	4.4	58

#	Article	IF	CITATIONS
145	Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula) Tj ETQq1 1 0.784314 rgB	T ₄ Qverloo	ck_10 Tf 50
146	Soil phosphorus fractionation and nutrient dynamics along the Cooloola coastal dune chronosequence, southern Queensland, Australia. Geoderma, 2015, 257-258, 4-13.	2.3	57
147	Plants sustain the terrestrial silicon cycle during ecosystem retrogression. Science, 2020, 369, 1245-1248.	6.0	57
148	Inositol phosphates in soil: amounts, forms and significance of the phosphorylated inositol stereoisomers , 2007, , 186-206.		56
149	Rapid estimation of microbial biomass in grassland soils by ultra-violet absorbance. Soil Biology and Biochemistry, 2001, 33, 913-919.	4.2	55
150	Characterization of the phosphatase activities of mosses in relation to their environment. Plant, Cell and Environment, 2001, 24, 1165-1176.	2.8	55
151	Seasonal phosphatase activity in three characteristic soils of the English uplands polluted by long-term atmospheric nitrogen deposition. Environmental Pollution, 2002, 120, 313-317.	3.7	55
152	Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees. New Phytologist, 2016, 212, 400-408.	3.5	55
153	The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests. Journal of Ecology, 2017, 105, 569-579.	1.9	55
154	A climosequence of chronosequences in southwestern Australia. European Journal of Soil Science, 2018, 69, 69-85.	1.8	55
155	Carbon sequestration potential of tropical pasture compared with afforestation in Panama. Global Change Biology, 2011, 17, 2763-2780.	4.2	54
156	Plant <i>δ</i> ¹⁵ N Correlates with the Transpiration Efficiency of Nitrogen Acquisition in Tropical Trees. Plant Physiology, 2009, 151, 1667-1676.	2.3	53
157	Seasonal Changes and Treatment Effects on Soil Inorganic Nutrients Following a Decade of Fertilizer Addition in a Lowland Tropical Forest. Soil Science Society of America Journal, 2013, 77, 1357-1369.	1.2	52
158	When does intraspecific trait variation contribute to functional betaâ€diversity?. Journal of Ecology, 2016, 104, 487-496.	1.9	52
159	Plasticity in nitrogen uptake among plant species with contrasting nutrient acquisition strategies in a tropical forest. Ecology, 2017, 98, 1388-1398.	1.5	52
160	Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil Biology and Biochemistry, 2018, 127, 280-285.	4.2	52
161	Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant and Soil, 2021, 461, 43-61.	1.8	52
162	Soil organic phosphorus transformations along a coastal dune chronosequence under New Zealand temperate rain forest. Biogeochemistry, 2014, 121, 595-611.	1.7	51

#	Article	IF	CITATIONS
163	Seasonal changes in soil organic matter after a decade of nutrient addition in a lowland tropical forest. Biogeochemistry, 2015, 123, 221-235.	1.7	51
164	Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecology Letters, 2018, 21, 1486-1495.	3.0	51
165	Soil nutrient dynamics during podzol development under lowland temperate rain forest in New Zealand. Catena, 2012, 97, 50-62.	2.2	48
166	Does litter input determine carbon storage and peat organic chemistry in tropical peatlands?. Geoderma, 2018, 326, 76-87.	2.3	48
167	Contrasting patterns of plant and microbial diversity during longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 606-621.	1.9	48
168	Quality not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry, 2016, 103, 86-96.	4.2	47
169	Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis. Geoderma, 2016, 284, 93-102.	2.3	47
170	Phosphorus Composition of Manure from Swine Fed Lowâ€Phytate Grains. Journal of Environmental Quality, 2004, 33, 2380-2383.	1.0	46
171	Biogeochemistry drives diversity in the prokaryotes, fungi, and invertebrates of a Panama forest. Ecology, 2017, 98, 2019-2028.	1.5	46
172	Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. New Phytologist, 2017, 215, 1425-1437.	3.5	46
173	Phosphorus composition of upland soils polluted by long-term atmospheric nitrogen deposition. Biogeochemistry, 2003, 65, 259-274.	1.7	45
174	Stable nitrogen isotope patterns of trees and soils altered by long-term nitrogen and phosphorus addition to a lowland tropical rainforest. Biogeochemistry, 2014, 119, 293-306.	1.7	45
175	Arbuscular mycorrhizal fungal community composition is altered by longâ€ŧerm litter removal but not litter addition in a lowland tropical forest. New Phytologist, 2017, 214, 455-467.	3.5	45
176	Phytate as a novel phosphorus-specific paleo-indicator in aquatic sediments. Journal of Paleolimnology, 2009, 42, 391-400.	0.8	43
177	Temporal patterns of nutrient availability around nests of leaf-cutting ants (Atta colombica) in secondary moist tropical forest. Soil Biology and Biochemistry, 2009, 41, 1088-1093.	4.2	42
178	Soil Phosphorus Forms along a Strong Nutrient Gradient in a Tropical Ombrotrophic Wetland. Soil Science Society of America Journal, 2012, 76, 1496-1506.	1.2	42
179	Preferences or plasticity in nitrogen acquisition by understorey palms in a tropical montane forest. Journal of Ecology, 2013, 101, 819-825.	1.9	42
180	Environmental controls of temporal and spatial variability in <scp><scp>CO₂</scp> and <scp><scp>CH₄</scp></scp> fluxes in a neotropical peatland. Global Change Biology, 2013, 19, 3775-3789.</scp>	4.2	42

#	Article	IF	CITATIONS
181	Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes , 2005, , 205-241.		42
182	Mineralisation of soil orthophosphate monoesters under pine seedlings and ryegrass. Soil Research, 2004, 42, 189.	0.6	41
183	Organic phosphorus in Madagascan rice soils. Geoderma, 2006, 136, 279-288.	2.3	41
184	Role of legacy phosphorus in improving global phosphorus-use efficiency. Environmental Development, 2013, 8, 147-148.	1.8	41
185	Getting to the root of the problem: litter decomposition and peat formation in lowland Neotropical peatlands. Biogeochemistry, 2015, 126, 115-129.	1.7	41
186	Biotic and abiotic plant–soil feedback depends on nitrogenâ€acquisition strategy and shifts during longâ€ŧerm ecosystem development. Journal of Ecology, 2019, 107, 142-153.	1.9	41
187	Methane emissions from tree stems in neotropical peatlands. New Phytologist, 2020, 225, 769-781.	3.5	41
188	Linking Phosphorus Sequestration to Carbon Humification in Wetland Soils by ³¹ P and ¹³ C NMR Spectroscopy. Environmental Science & Technology, 2012, 46, 4775-4782.	4.6	40
189	Connectivity of overland flow by drainage network expansion in a rain forest catchment. Water Resources Research, 2014, 50, 1457-1473.	1.7	40
190	Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry, 2019, 142, 231-245.	1.7	40
191	Plant–soil associations in a lower montane tropical forest: physiological acclimation and herbivoreâ€mediated responses to nitrogen addition. Functional Ecology, 2010, 24, 1171-1180.	1.7	39
192	Oxygen isotopes of phosphate and soil phosphorus cycling across a 6500 year chronosequence under lowland temperate rainforest. Geoderma, 2015, 257-258, 14-21.	2.3	39
193	Chemical nature of residual phosphorus in Andisols. Geoderma, 2016, 271, 27-31.	2.3	39
194	Optimizing Phosphorus Characterization in Animal Manures by Solution Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy. Journal of Environmental Quality, 2004, 33, 757.	1.0	38
195	Quantification and bioavailability of scyllo-inositol hexakisphosphate in pasture soils. Soil Biology and Biochemistry, 2005, 37, 2155-2158.	4.2	38
196	Soil Phosphorus Forms in Hydrologically Isolated Wetlands and Surrounding Pasture Uplands. Journal of Environmental Quality, 2010, 39, 1517-1525.	1.0	38
197	Soils and rainfall drive landscapeâ€scale changes in the diversity and functional composition of tree communities in premontane tropical forest. Journal of Vegetation Science, 2017, 28, 859-870.	1.1	38
198	Linking Manure Properties to Phosphorus Solubility in Calcareous Soils. Soil Science Society of America Journal, 2005, 69, 1516-1524.	1.2	37

#	Article	IF	CITATIONS
199	Identification of inositol hexakisphosphate binding sites in soils by selective extraction and solution 31P NMR spectroscopy. Geoderma, 2015, 257-258, 22-28.	2.3	37
200	Tracing the Sources of Atmospheric Phosphorus Deposition to a Tropical Rain Forest in Panama Using Stable Oxygen Isotopes. Environmental Science & Technology, 2016, 50, 1147-1156.	4.6	37
201	Nitrogen and phosphorus in soil solutions and drainage streams in Upper Teesdale, northern England: implications of organic compounds for biological nutrient limitation. Science of the Total Environment, 2003, 314-316, 153-170.	3.9	36
202	Enhancing Phytate Availability in Soils and Phytate-P Acquisition by Plants: A Review. Environmental Science & Technology, 2022, 56, 9196-9219.	4.6	36
203	Silicon in tropical forests: large variation across soils and leaves suggests ecological significance. Biogeochemistry, 2018, 140, 161-174.	1.7	35
204	Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant and Soil, 2020, 450, 133-149.	1.8	35
205	Greater root phosphatase activity of tropical trees at low phosphorus despite strong variation among species. Ecology, 2020, 101, e03090.	1.5	35
206	Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: Interactions between forest type and peat moisture conditions. Geoderma, 2018, 324, 47-55.	2.3	34
207	Sample Pretreatment and Phosphorus Speciation in Wetland Soils. Soil Science Society of America Journal, 2007, 71, 1538-1546.	1.2	33
208	Shifts in symbiotic associations in plants capable of forming multiple root symbioses across a longâ€ŧerm soil chronosequence. Ecology and Evolution, 2016, 6, 2368-2377.	0.8	33
209	Soil abiotic and biotic properties constrain the establishment of a dominant temperate tree into boreal forests. Journal of Ecology, 2020, 108, 931-944.	1.9	33
210	Decadal-scale litter manipulation alters the biochemical and physical character of tropical forest soil carbon. Soil Biology and Biochemistry, 2018, 124, 199-209.	4.2	32
211	Aeolian dust deposition and the perturbation of phosphorus transformations during long-term ecosystem development in a cool, semi-arid environment. Geochimica Et Cosmochimica Acta, 2019, 246, 498-514.	1.6	32
212	Liana effects on biomass dynamics strengthen during secondary forest succession. Ecology, 2017, 98, 1062-1070.	1.5	31
213	High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant and Soil, 2018, 424, 255-271.	1.8	31
214	Sulfur dynamics during long-term ecosystem development. Biogeochemistry, 2016, 128, 281-305.	1.7	30
215	Phosphorus in Surface Runoff from Calcareous Arable Soils of the Semiarid Western United States. Journal of Environmental Quality, 2004, 33, 1814-1821.	1.0	29
216	Soil phosphorus responses to chronic nutrient fertilisation and seasonal drought in a humid lowland forest, Panama. Soil Research, 2013, 51, 215.	0.6	29

#	Article	IF	CITATIONS
217	Changes in soil carbon and nutrients following 6 years of litter removal and addition in a tropical semi-evergreen rain forest. Biogeosciences, 2016, 13, 6183-6190.	1.3	29
218	Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Science of the Total Environment, 2019, 688, 1193-1204.	3.9	29
219	Revisiting nutrient cycling by litterfall—Insights from 15 years of litter manipulation in old-growth lowland tropical forest. Advances in Ecological Research, 2020, 62, 173-223.	1.4	29
220	Interaction of Phosphorus Compounds with Anionâ€Exchange Membranes: Implications for Soil Analysis. Soil Science Society of America Journal, 2010, 74, 1607-1612.	1.2	28
221	Separating the influences of diagenesis, productivity and anthropogenic nitrogen deposition on sedimentary δ15N variations. Organic Geochemistry, 2014, 75, 140-150.	0.9	28
222	Oxygen isotope ratios of plant available phosphate in lowland tropical forest soils. Soil Biology and Biochemistry, 2015, 88, 354-361.	4.2	28
223	Edaphic factors and initial conditions influence successional trajectories of early regenerating tropical dry forests. Journal of Ecology, 2020, 108, 160-174.	1.9	28
224	Temperate Forests Dominated by Arbuscular or Ectomycorrhizal Fungi Are Characterized by Strong Shifts from Saprotrophic to Mycorrhizal Fungi with Increasing Soil Depth. Microbial Ecology, 2021, 82, 377-390.	1.4	28
225	Comment on "The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change― Science, 2011, 333, 1825-1825.	6.0	27
226	Diagenesis of settling seston: identity and transformations of organic phosphorus. Journal of Environmental Monitoring, 2012, 14, 1098.	2.1	27
227	Leaf litter inputs decrease phosphate sorption in a strongly weathered tropical soil over two time scales. Biogeochemistry, 2013, 113, 507-524.	1.7	27
228	Soil carbon stocks across tropical forests of Panama regulated by base cation effects on fine roots. Biogeochemistry, 2018, 137, 253-266.	1.7	27
229	Nutrient acquisition strategies augment growth in tropical N ₂ â€fixing trees in nutrientâ€poor soil and under elevated <scp>CO</scp> ₂ . Ecology, 2019, 100, e02646.	1.5	27
230	A shift from phenol to silicaâ€based leaf defences during longâ€ŧerm soil and ecosystem development. Ecology Letters, 2021, 24, 984-995.	3.0	27
231	Seasonal phosphatase activities of mosses from Upper Teesdale, northern England. Journal of Bryology, 2003, 25, 189-200.	0.4	26
232	Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata. Environmental Pollution, 2017, 226, 212-218.	3.7	26
233	Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession. Journal of Ecology, 2018, 106, 1415-1427.	1.9	26
234	Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry, 2020, 147, 87-97.	1.7	26

#	Article	IF	CITATIONS
235	Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorusâ€impoverished landscapes. Plant and Soil, 2021, 462, 67-88.	1.8	26
236	Storage-Induced Changes in Phosphorus Solubility of Air-Dried Soils. Soil Science Society of America Journal, 2005, 69, 630-633.	1.2	25
237	Patterns of tree community composition along a coastal dune chronosequence in lowland temperate rain forest in New Zealand. Plant Ecology, 2012, 213, 1525-1541.	0.7	25
238	The Chemical Nature of Phosphorus in Subtropical Lake Sediments. Aquatic Geochemistry, 2014, 20, 437-457.	1.5	25
239	Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere, 2017, 8, e01712.	1.0	25
240	Decomposition of coarse woody debris in a longâ€ŧerm litter manipulation experiment: A focus on nutrient availability. Functional Ecology, 2018, 32, 1128-1138.	1.7	25
241	Phosphorus , 2002, , 29-55.		25
242	A taxonomic comparison of local habitat niches of tropical trees. Oecologia, 2013, 173, 1491-1498.	0.9	24
243	Soil drivers of localâ€scale tree growth in a lowland tropical forest. Ecology, 2018, 99, 2844-2852.	1.5	24
244	Forms of organic phosphorus in wetland soils. Biogeosciences, 2014, 11, 6697-6710.	1.3	23
245	Long-Term Effects of White-Tailed Deer Exclusion on the Invasion of Exotic Plants: A Case Study in a Mid-Atlantic Temperate Forest. PLoS ONE, 2016, 11, e0151825.	1.1	23
246	Root quality and decomposition environment, but not tree species richness, drive root decomposition in tropical forests. Plant and Soil, 2016, 404, 125-139.	1.8	23
247	Nutrient limitation or home field advantage: Does microbial community adaptation overcome nutrient limitation of litter decomposition in a tropical peatland?. Journal of Ecology, 2018, 106, 1558-1569.	1.9	23
248	On the history and future of soil organic phosphorus research: a critique across three generations. European Journal of Soil Science, 2018, 69, 86-94.	1.8	23
249	Identification of -Inositol Phosphates in Soil by Solution Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy. Soil Science Society of America Journal, 2004, 68, 802.	1.2	23
250	Root oxygen loss from Raphia taedigera palms mediates greenhouse gas emissions in lowland neotropical peatlands. Plant and Soil, 2016, 404, 47-60.	1.8	22
251	A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162093.	1.2	22
252	Disentangling the functional trait correlates of spatial aggregation in tropical forest trees. Ecology, 2019, 100, e02591.	1.5	22

#	Article	IF	CITATIONS
253	Artefacts of the pot environment on soil nutrient availability: implications for the interpretation of ecological studies. Plant Ecology, 2013, 214, 329-338.	0.7	21
254	Impact of Simulated Changes in Water Table Depth on Ex Situ Decomposition of Leaf Litter from a Neotropical Peatland. Wetlands, 2013, 33, 217-226.	0.7	21
255	Tree co-occurrence and transcriptomic response to drought. Nature Communications, 2017, 8, 1996.	5.8	21
256	Shifts in taxonomic and functional composition of trees along rainfall and phosphorus gradients in central Panama. Journal of Ecology, 2021, 109, 51-61.	1.9	21
257	Improving Phosphorus Fertility in Tropical Soils through Biological Interventions. Books in Soils, Plants, and the Environment, 2006, , 531-546.	0.1	20
258	Divergent composition and turnover of soil organic nitrogen along a climate gradient in arid and semiarid grasslands. Geoderma, 2018, 327, 36-44.	2.3	20
259	Silicon Dynamics During 2 Million Years of Soil Development in a Coastal Dune Chronosequence Under a Mediterranean Climate. Ecosystems, 2020, 23, 1614-1630.	1.6	20
260	Fine Root and Soil Organic Carbon Depth Distributions are Inversely Related Across Fertility and Rainfall Gradients in Lowland Tropical Forests. Ecosystems, 2021, 24, 1075-1092.	1.6	20
261	Seedling performance trade-offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology, 2014, 95, 3399-3413.	1.5	19
262	Two tropical conifers show strong growth and water-use efficiency responses to altered CO ₂ concentration. Annals of Botany, 2016, 118, 1113-1125.	1.4	19
263	Toward more robust plant–soil feedback research: Comment. Ecology, 2019, 100, e02590.	1.5	19
264	Resource acquisition strategies facilitate <i>Gilbertiodendron dewevrei</i> monodominance in African lowland forests. Journal of Ecology, 2020, 108, 433-448.	1.9	19
265	Phosphorus characterization in feces from broiler chicks fed low-phytate barley diets. Journal of the Science of Food and Agriculture, 2007, 87, 1495-1501.	1.7	18
266	Progressive and retrogressive ecosystem development coincide with soil bacterial community change in a dune system under lowland temperate rainforest in New Zealand. Plant and Soil, 2013, 367, 235-247.	1.8	18
267	Quantification of pyrophosphate in soil solution by pyrophosphatase hydrolysis. Soil Biology and Biochemistry, 2014, 74, 95-97.	4.2	18
268	Divergent, age-associated fungal communities of Pinus flexilis and Pinus longaeva. Forest Ecology and Management, 2021, 494, 119277.	1.4	18
269	Demographic consequences of foraging ecology explain genetic diversification in Neotropical bird species. Ecology Letters, 2021, 24, 563-571.	3.0	18
270	Isolating the effects of precipitation, soil conditions, and litter quality on leaf litter decomposition in lowland tropical forests. Plant and Soil, 2015, 394, 225-238.	1.8	17

#	Article	IF	CITATIONS
271	Effect of microsite quality and species composition on tree growth: A semi-empirical modeling approach. Forest Ecology and Management, 2019, 432, 534-545.	1.4	17
272	Coarse root architecture: Neighbourhood and abiotic environmental effects on five tropical tree species growing in mixtures and monocultures. Forest Ecology and Management, 2020, 460, 117851.	1.4	17
273	Reproductive phenology and physiological traits in the red mangrove hybrid complex (Rhizophora) Tj ETQq1 1 0. 481-493.	.784314 r 0.7	gBT /Overlock 16
274	Root oxygen mitigates methane fluxes in tropical peatlands. Environmental Research Letters, 2020, 15, 064013.	2.2	16
275	Peat Properties, Dominant Vegetation Type and Microbial Community Structure in a Tropical Peatland. Wetlands, 2020, 40, 1367-1377.	0.7	16
276	Density dependence and habitat heterogeneity regulate seedling survival in a North American temperate forest. Forest Ecology and Management, 2021, 480, 118722.	1.4	16
277	Phosphorus leaching under cut grassland. Water Science and Technology, 1999, 39, 63.	1.2	15
278	Seasonal patterns in decomposition and nutrient release from East African savanna grasses grown under contrasting nutrient conditions. Agriculture, Ecosystems and Environment, 2014, 188, 12-19.	2.5	15
279	Landâ€use history augments environment–plant community relationship strength in a Puerto Rican wet forest. Journal of Ecology, 2016, 104, 1466-1477.	1.9	15
280	Root-derived CO2 flux from a tropical peatland. Wetlands Ecology and Management, 2018, 26, 985-991.	0.7	15
281	Occurrence of crassulacean acid metabolism in Colombian orchids determined by leaf carbon isotope ratios. Botanical Journal of the Linnean Society, 2020, 193, 431-477.	0.8	15
282	Nutrient limitation along the Jurien Bay dune chronosequence: response to Uren & Parsons (). Journal of Ecology, 2013, 101, 1088-1092.	1.9	14
283	A hydrochemical approach to quantify the role of return flow in a surface flowâ€dominated catchment. Hydrological Processes, 2017, 31, 1018-1033.	1.1	14
284	Seasonal changes in soil respiration linked to soil moisture and phosphorus availability along a tropical rainfall gradient. Biogeochemistry, 2019, 145, 235-254.	1.7	14
285	Transformation of soil organic phosphorus along the Hailuogou post-glacial chronosequence, southeastern edge of the Tibetan Plateau. Geoderma, 2019, 352, 414-421.	2.3	14
286	Structure and nutrient transfer in a tropical pelagic upwelling food web: From isoscapes to the whole ecosystem. Progress in Oceanography, 2019, 178, 102145.	1.5	13
287	Enhancing Phosphorus Availability in Low-Fertility Soils. Books in Soils, Plants, and the Environment, 2006, , 191-205.	0.1	12
288	Does the Growth Rate Hypothesis Apply across Temperatures? Variation in the Growth Rate and Body Phosphorus of Neotropical Benthic Grazers. Frontiers in Environmental Science, 2017, 5, .	1.5	12

#	Article	IF	CITATIONS
289	Tropical forest dynamics in unstable terrain: a case study from New Guinea. Journal of Tropical Ecology, 2018, 34, 157-175.	0.5	12
290	Soil microbial communities influencing organic phosphorus mineralization in a coastal dune chronosequence in New Zealand. FEMS Microbiology Ecology, 2021, 97, .	1.3	12
291	Soil fertility and the yield response to the System of Rice Intensification. Renewable Agriculture and Food Systems, 2011, 26, 185-192.	0.8	11
292	Current ambient concentrations of ozone in Panama modulate the leaf chemistry of the tropical tree Ficus insipida. Chemosphere, 2017, 172, 363-372.	4.2	11
293	Co-occurring Fungal Functional Groups Respond Differently to Tree Neighborhoods and Soil Properties Across Three Tropical Rainforests in Panama. Microbial Ecology, 2020, 79, 675-685.	1.4	11
294	Organic Matter Chemistry Drives Carbon Dioxide Production of Peatlands. Geophysical Research Letters, 2021, 48, e2021GL093392.	1.5	11
295	A Novel Technique for the Preâ€Concentration and Extraction of Inositol Hexakisphosphate from Soil Extracts with Determination by Phosphorusâ€31 Nuclear Magnetic Resonance. Journal of Environmental Quality, 2002, 31, 466-470.	1.0	10
296	Dissolved phosphorus composition of grassland leachates following application of dairyâ€slurry size fractions. Journal of Plant Nutrition and Soil Science, 2012, 175, 78-85.	1.1	10
297	Seasonal upwelling reduces herbivore control of tropical rocky intertidal algal communities. Ecology, 2021, 102, e03335.	1.5	10
298	The effects of herbivory and nutrients on plant biomass and carbon storage in Vertisols of an East African savanna. Agriculture, Ecosystems and Environment, 2015, 208, 55-63.	2.5	9
299	Interference by Iron in the Determination of Boron by ICP-OES in Mehlich-III Extracts and Total Element Digests of Tropical Forest Soils. Communications in Soil Science and Plant Analysis, 2016, 47, 2378-2386.	0.6	9
300	Phylogenetic turnover along local environmental gradients in tropical forest communities. Oecologia, 2016, 182, 547-557.	0.9	9
301	Phosphatase activities in sediments of subtropical lakes with different trophic states. Hydrobiologia, 2017, 788, 305-318.	1.0	9
302	Urochloa ruziziensis cover crop increases the cycling of soil inositol phosphates. Biology and Fertility of Soils, 2018, 54, 935-947.	2.3	9
303	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	9
304	Speciesâ€specific effects of phosphorus addition on tropical tree seedling response to elevated CO ₂ . Functional Ecology, 2019, 33, 1871-1881.	1.7	9
305	Toxic effects of soil manganese on tropical trees. Plant and Soil, 2020, 453, 343-354.	1.8	9
306	On-farm evaluation of a low-input rice production system in Panama. Paddy and Water Environment, 2011, 9, 155-161.	1.0	8

#	Article	IF	CITATIONS
307	Phosphorus Characterization in Wetland Soils by Solution Phosphorus-31 Nuclear Magnetic Resonance Spectroscopy. Soil Science Society of America Book Series, 0, , 639-665.	0.3	8
308	Consequences of the physical nature of the parent material for pedogenesis, nutrient availability, and succession in temperate rainforests. Plant and Soil, 2018, 423, 533-548.	1.8	8
309	Characterization of Bacterial and Fungal Communities Reveals Novel Consortia in Tropical Oligotrophic Peatlands. Microbial Ecology, 2021, 82, 188-201.	1.4	8
310	Novel phytase PvPHY1 from the As-hyperaccumulator Pteris vittata enhances P uptake and phytate hydrolysis, and inhibits As translocation in Plant. Journal of Hazardous Materials, 2022, 423, 127106.	6.5	8
311	Phosphorus Leaching Under Cut Grassland. Water Science and Technology, 1999, 39, 63-67.	1.2	8
312	Response to Comment on "The Response of Vegetation on the Andean Flank in Western Amazonia to Pleistocene Climate Change― Science, 2011, 333, 1825-1825.	6.0	7
313	Geospatial observations on tropical forest surface soil chemistry. Ecology, 2015, 96, 2313-2313.	1.5	7
314	The Response of Litterâ€Associated Myxomycetes to Longâ€Term Nutrient Addition in a Lowland Tropical Forest. Journal of Eukaryotic Microbiology, 2019, 66, 757-770.	0.8	7
315	Growth responses of ectomycorrhizal and arbuscular mycorrhizal seedlings to low soil nitrogen availability in a tropical montane forest. Functional Ecology, 2022, 36, 107-119.	1.7	7
316	Response to Comment on "Plant diversity increases with the strength of negative density dependence at the global scale― Science, 2018, 360, .	6.0	6
317	A rapid ammonium fluoride method to determine the oxygen isotope ratio of available phosphorus in tropical soils. Rapid Communications in Mass Spectrometry, 2020, 34, e8647.	0.7	6
318	Soil and microbial nutrient status are heterogeneous within an elevational belt on a neotropical mountain. Pedobiologia, 2020, 83, 150689.	0.5	6
319	Competing effects of soil fertility and toxicity on tropical greening. Scientific Reports, 2020, 10, 6725.	1.6	6
320	Seasonal changes in the surface phosphatase kinetics of aquatic mosses in northern England. Journal of Bryology, 2007, 29, 174-182.	0.4	5
321	Salinity responses of inland and coastal neotropical trees species. Plant Ecology, 2020, 221, 695-708.	0.7	5
322	Why are tropical conifers disadvantaged in fertile soils? Comparison of Podocarpus guatemalensis with an angiosperm pioneer, Ficus insipida. Tree Physiology, 2020, 40, 810-821.	1.4	5
323	Compositional variation in understorey fern and palm communities along a soil fertility and rainfall gradient in a lower montane tropical forest. Journal of Vegetation Science, 2021, 32, .	1.1	5
324	A Novel Technique for the Pre-Concentration and Extraction of Inositol Hexakisphosphate from Soil Extracts with Determination by Phosphorus-31 Nuclear Magnetic Resonance. Journal of Environmental Quality, 2002, 31, 466.	1.0	4

#	Article	IF	CITATIONS
325	No evidence that boron influences tree species distributions in lowland tropical forests of Panama. New Phytologist, 2017, 214, 108-119.	3.5	4
326	Nutrient availability predicts multiple stem frequency, an indicator of species resprouting capacity in tropical forests. Journal of Ecology, 2021, 109, 1633-1648.	1.9	4
327	Influence of neighbourhoods on the extent and compactness of tropical tree crowns and root systems. Trees - Structure and Function, 2021, 35, 1673-1686.	0.9	4
328	Impact of ecosystem water balance and soil parent material on silicon dynamics: insights from three long-term chronosequences. Biogeochemistry, 2021, 156, 335-350.	1.7	4
329	Influence of pH and redox on mobilization of inositol hexakisphosphate from oligotrophic lake sediment. Biogeochemistry, 2018, 140, 15-30.	1.7	3
330	Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. Journal of Tropical Ecology, 2019, 35, 95-107.	0.5	3
331	Abiotic and biotic drivers of endosymbiont community assembly in Jatropha curcas. Ecosphere, 2019, 10, e02941.	1.0	3
332	No Evidence that the Valuable Timber Species, <i>Dalbergia retusa</i> , Enhances Nutrient Cycling and Uptake by Neighboring Timber Species. Journal of Sustainable Forestry, 2023, 42, 205-217.	0.6	3
333	Millennial-Scale Phosphorus Transformations during Diagenesis in a Subtropical Peatland. Soil Science Society of America Journal, 2014, 78, 1087-1096.	1.2	2
334	Abiotic contribution to phenol oxidase activity across a manganese gradient in tropical forest soils. Biogeochemistry, 2021, 153, 33-45.	1.7	2
335	Early historical forest clearance caused major degradation of water quality at Lake Væng, Denmark. Anthropocene, 2021, 35, 100302.	1.6	2
336	Isolation of Inositol Hexakisphosphate from Soils by Alkaline Extraction and Hypobromite Oxidation. Methods in Molecular Biology, 2020, 2091, 39-46.	0.4	2
337	Response to Comment on "Determination of neo- and d-chiro-Inositol Hexakisphosphate in Soils by Solution 31P NMR Spectroscopy― Environmental Science & Technology, 2012, 46, 11480-11481.	4.6	1
338	Response to Comment on "The Chemical Nature of Phosphorus in Subtropical Lake Sedimentsâ€ , by Kenney et al Aquatic Geochemistry, 2015, 21, 7-9.	1.5	1
339	Trophic Trait Evolution Explains Variation in Nutrient Excretion Stoichiometry among Panamanian Armored Catfishes (Loricariidae). Diversity, 2019, 11, 88.	0.7	1
340	A novel technique for the pre-concentration and extraction of inositol hexakisphosphate from soil extracts with determination by phosphorus-31 nuclear magnetic resonance. Journal of Environmental Quality, 2002, 31, 466-70.	1.0	1