Daisuke Uraguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546758/publications.pdf

Version: 2024-02-01

99 6,910 43 h-index

155 155 155 4238 all docs docs citations times ranked citing authors

82

g-index

#	Article	IF	CITATIONS
1	Chiral Br \tilde{A} , nsted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation. Journal of the American Chemical Society, 2004, 126, 5356-5357.	13.7	1,430
2	Organocatalytic Asymmetric Aza-Friedelâ^'Crafts Alkylation of Furan. Journal of the American Chemical Society, 2004, 126, 11804-11805.	13.7	351
3	Synergistic Catalysis of Ionic Br \tilde{A} ,nsted Acid and Photosensitizer for a Redox Neutral Asymmetric \hat{I} ±-Coupling of $\langle i \rangle N \langle i \rangle$ -Arylaminomethanes with Aldimines. Journal of the American Chemical Society, 2015, 137, 13768-13771.	13.7	294
4	Chiral Organic Ion Pair Catalysts Assembled Through a Hydrogen-Bonding Network. Science, 2009, 326, 120-123.	12.6	219
5	Chiral Tetraaminophosphonium Salt-Mediated Asymmetric Direct Henry Reaction. Journal of the American Chemical Society, 2007, 129, 12392-12393.	13.7	208
6	Organocatalytic Asymmetric Direct Alkylation of \hat{l}_{\pm} -Diazoester via Câ^'H Bond Cleavage. Journal of the American Chemical Society, 2005, 127, 9360-9361.	13.7	197
7	Chiral Tetraaminophosphonium Carboxylate-Catalyzed Direct Mannich-Type Reaction. Journal of the American Chemical Society, 2008, 130, 14088-14089.	13.7	188
8	Trifluoromethylation of various aromatic compounds by CF3I in the presence of Fe(II) compound, H2O2 and dimethylsulfoxide. Journal of Fluorine Chemistry, 2010, 131, 98-105.	1.7	187
9	Highly Regio-, Diastereo-, and Enantioselective 1,6- and 1,8-Additions of Azlactones to Di- and Trienyl <i>N</i> -Acylpyrroles. Journal of the American Chemical Society, 2012, 134, 19370-19373.	13.7	155
10	Chiral Phosphoric Acidâ€Catalyzed Enantioselective Azaâ€Friedel–Crafts Reaction of Indoles. Advanced Synthesis and Catalysis, 2007, 349, 1863-1867.	4.3	154
11	Cp ₂ Ni-KO <i>t</i> -Bu-BEt ₃ (or PPh ₃) Catalyst System for Direct Câ^'H Arylation of Benzene, Naphthalene, and Pyridine. Organic Letters, 2009, 11, 2679-2682.	4.6	146
12	Chiral Ammonium Betaines: A Bifunctional Organic Base Catalyst for Asymmetric Mannich-Type Reaction of α-Nitrocarboxylates. Journal of the American Chemical Society, 2008, 130, 10878-10879.	13.7	143
13	Generation of Chiral Phosphonium Dialkyl Phosphite as a Highly Reactive <i>P</i> -Nucleophile: Application to Asymmetric Hydrophosphonylation of Aldehydes. Journal of the American Chemical Society, 2009, 131, 3836-3837.	13.7	139
14	Siteâ€Directed Asymmetric Quaternization of a Peptide Backbone at a Câ€Terminal Azlactone. Angewandte Chemie - International Edition, 2009, 48, 733-737.	13.8	114
15	Chiral Arylaminophosphonium Barfates as a New Class of Charged BrÃ,nsted Acid for the Enantioselective Activation of Nonionic Lewis Bases. Journal of the American Chemical Society, 2009, 131, 7242-7243.	13.7	112
16	Catalytic Asymmetric Direct Henry Reaction of Ynals: Short Syntheses of (2 <i>S</i> ,3 <i>R</i>)â€(+)â€Xestoaminolâ€C and (â^')â€Codonopsinines. Angewandte Chemie - International Edition, 2010, 49, 7562-7565.	13.8	110
17	Baseâ€Catalyzed Direct Aldolization of αâ€Alkylâ€Î±â€Hydroxy Trialkyl Phosphonoacetates. Angewandte Chemie International Edition, 2012, 51, 4685-4689.	13.8	104
18	A femtomolar-range suicide germination stimulant for the parasitic plant <i>Striga hermonthica</i> Science, 2018, 362, 1301-1305.	12.6	101

#	Article	IF	CITATIONS
19	Regio- and Enantiospecific Rhodium-Catalyzed Arylation of Unsymmetrical Fluorinated Acyclic Allylic Carbonates:Â Inversion of Absolute Configuration. Journal of the American Chemical Society, 2003, 125, 7158-7159.	13.7	90
20	Catalytic Asymmetric Allylation of Aldehydes and Related Reactions with Bis(((S)-binaphthoxy)(isopropoxy)titanium) Oxide as al \(\frac{1}{4}\)-Oxo-Type Chiral Lewis Acid. Chemistry - A European Journal, 2003, 9, 4405-4413.	3.3	86
21	Chiral Ammonium Betaines as Ionic Nucleophilic Catalysts. Angewandte Chemie - International Edition, 2010, 49, 5567-5569.	13.8	81
22	Complete diastereodivergence in asymmetric 1,6-addition reactions enabled by minimal modification of a chiral catalyst. Nature Communications, 2017, 8, 14793.	12.8	79
23	Highly stereoselective Michael addition of azlactones to electron-deficient triple bonds under P-spiro chiral iminophosphorane catalysis: importance of protonation pathway. Chemical Science, 2013, 4, 1308.	7.4	77
24	Phosphorodiamidic Acid as a Novel Structural Motif of BrÃ, nsted Acid Catalysts for Direct Mannich Reaction of N-Acyl Imines with 1,3-Dicarbonyl Compounds. Synlett, 2006, 2006, 0133-0136.	1.8	74
25	Organoaluminum-catalyzed new alkylation of tert-alkyl fluorides: Synthetic utility of Alî—,F interaction. Tetrahedron Letters, 1997, 38, 5679-5682.	1.4	73
26	Catalytic Asymmetric Protonation of \hat{l}_{\pm} -Amino Acid-Derived Ketene Disilyl Acetals Using <i>P</i> Spiro Diaminodioxaphosphonium Barfates as Chiral Proton. Journal of the American Chemical Society, 2010, 132, 12240-12242.	13.7	72
27	Stereodivergent Construction of Cyclic Ethers by a Regioselective and Enantiospecific Rhodium-Catalyzed Allylic Etherification: Total Synthesis of Gaur Acid. Angewandte Chemie - International Edition, 2004, 43, 4788-4791.	13.8	70
28	Enantioselective reductive multicomponent coupling reactions between isatins and aldehydes. Chemical Science, 2015, 6, 6086-6090.	7.4	69
29	Flexible synthesis, structural determination, and synthetic application of a new C1-symmetric chiral ammonium betaine. Chemical Communications, 2010, 46, 300-302.	4.1	68
30	Independence from the Sequence of Single-Electron Transfer of Photoredox Process in Redox-Neutral Asymmetric Bond-Forming Reaction. Journal of Organic Chemistry, 2016, 81, 6953-6958.	3.2	63
31	Catalytic asymmetric hydrophosphonylation of ynones. Chemical Science, 2010, 1, 488.	7.4	62
32	Hypercoordination of Boron and Aluminum:Â Synthetic Utility as Chelating Lewis Acids. Journal of the American Chemical Society, 1998, 120, 5327-5328.	13.7	61
33	Chiral ionic Brønsted acid–achiral Brønsted base synergistic catalysis for asymmetric sulfa-Michael addition to nitroolefins. Chemical Science, 2012, 3, 3161.	7.4	59
34	Catalytic Asymmetric Oxidation of <i>N</i> -Sulfonyl Imines with Hydrogen Peroxide–Trichloroacetonitrile System. Journal of the American Chemical Society, 2013, 135, 8161-8164.	13.7	57
35	Urea as a Redox-Active Directing Group under Asymmetric Photocatalysis of Iridium-Chiral Borate Ion Pairs. Journal of the American Chemical Society, 2020, 142, 19462-19467.	13.7	57
36	Highly <i>E</i> â€Selective and Enantioselective Michael Addition to Electronâ€Deficient Internal Alkynes Under Chiral Iminophosphorane Catalysis. Angewandte Chemie - International Edition, 2015, 54, 9954-9957.	13.8	55

3

#	Article	IF	CITATIONS
37	Highly stereoselective catalytic conjugate addition of acyl anion equivalent to nitroolefins. Chemical Science, 2012, 3, 842-845.	7.4	49
38	Syntheses of 2-(trifluoromethyl)-1,3-dicarbonyl compounds through direct trifluoromethylation with CF3I and their application to fluorinated pyrazoles syntheses. Tetrahedron, 2012, 68, 2636-2649.	1.9	49
39	Performance of C1-symmetric chiral ammonium betaines as catalysts for the enantioselective Mannich-type reaction of \hat{l}_{\pm} -nitrocarboxylates. Tetrahedron: Asymmetry, 2010, 21, 1189-1190.	1.8	44
40	Ionic Nucleophilic Catalysis of Chiral Ammonium Betaines for Highly Stereoselective Aldol Reaction from Oxindole-Derived Vinylic Carbonates. Journal of the American Chemical Society, 2012, 134, 6972-6975.	13.7	44
41	Catalystâ€Enabled Siteâ€Divergent Stereoselective Michael Reactions: Overriding Intrinsic Reactivity of Enynyl Carbonyl Acceptors. Angewandte Chemie - International Edition, 2018, 57, 4732-4736.	13.8	44
42	Catalytic trifluoromethylation of uracil to 5-trifluoromethyluracil by use of CF3I and its industrial applications. Applied Catalysis A: General, 2008, 342, 137-143.	4.3	42
43	Development of P-Spiro Chiral Aminophosphonium Salts as a New Class of Versatile Organic Molecular Catalyst. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2010, 68, 1185-1194.	0.1	42
44	Acridinium Betaine as a Single-Electron-Transfer Catalyst: Design and Application to Dimerization of Oxindoles. ACS Catalysis, 2017, 7, 2765-2769.	11.2	41
45	Inserting Nitrogen: An Effective Concept To Create Nonplanar and Stimuli-Responsive Perylene Bisimide Analogues. Journal of the American Chemical Society, 2019, 141, 19807-19816.	13.7	40
46	Catalytic Asymmetric Direct Henry Reaction of Ynals: Short Syntheses of (2 <i>S</i> ,3 <i>R</i>)â€(+)â€Xestoaminolâ€C and (â°')â€Codonopsinines. Angewandte Chemie, 2010, 122, 77	2 4:7 727.	33
47	Enantioselective formal î±-allylation of nitroalkanes through a chiral iminophosphorane-catalyzed Michael reaction–Julia–Kocienski olefination sequence. Chemical Communications, 2014, 50, 3491-3493.	4.1	33
48	Nitroolefins as a Nucleophilic Component for Highly Stereoselective Aza Henry Reaction under the Catalysis of Chiral Ammonium Betaines. Chemistry - A European Journal, 2012, 18, 8306-8309.	3.3	32
49	Catalytic asymmetric Payne oxidation under the catalysis of P-spiro chiral triaminoiminophosphorane: application to the synthesis of N-sulfonyl oxaziridines. Tetrahedron, 2014, 70, 1691-1701.	1.9	32
50	Controlled Assembly of Chiral Tetraaminophosphonium Aryloxide–Arylhydroxide(s) in Solution. Angewandte Chemie - International Edition, 2011, 50, 3681-3683.	13.8	31
51	N-Sulfonyl \hat{I}_{\pm} -imino ester-derived chiral oxaziridines: catalytic asymmetric synthesis and application as a modular chiral organic oxidant. Chemical Communications, 2017, 53, 6999-7002.	4.1	31
52	Diastereo- and Enantioselective Direct Henry Reaction of Pyruvates Mediated by Chiral P-Spiro Tetraaminophosphonium Salts. Chemistry Letters, 2009, 38, 1052-1053.	1.3	28
53	Synthesis of α-trifluoromethylstyrene derivatives via Ni-catalyzed cross-coupling of 2-bromo-3,3,3-trifluoropropene and aryl Grignard reagents. Journal of Fluorine Chemistry, 2009, 130, 591-594.	1.7	27
54	Unique site-selectivity control in asymmetric Michael addition of azlactone to alkenyl dienyl ketones enabled by P-spiro chiral iminophosphorane catalysis. Chemical Communications, 2017, 53, 5495-5498.	4.1	26

#	Article	IF	CITATIONS
55	Catalyst-Directed Guidance of Sulfur-Substituted Enediolates to Stereoselective Carbon–Carbon Bond Formation with Aldehydes. Journal of the American Chemical Society, 2018, 140, 5110-5117.	13.7	25
56	Enantioselective protonation of \hat{l}_{\pm} -hetero carboxylic acid-derived ketene disilyl acetals under chiral ionic Br \tilde{A}_{s} ,nsted acid catalysis. Chemical Communications, 2014, 50, 13489-13491.	4.1	23
57	Chiral Ammonium Betaineâ€Catalyzed Highly Stereoselective Azaâ€Henry Reaction of αâ€Aryl Nitromethanes with Aromatic <i>N</i> à€Boc Imines. Chemistry - an Asian Journal, 2015, 10, 334-337.	3.3	22
58	Catalytic asymmetric synthesis of 5-membered alicyclic \hat{l} ±-quaternary \hat{l} 2-amino acids <i>via</i> [3 + 2]-photocycloaddition of \hat{l} ±-substituted acrylates. Organic and Biomolecular Chemistry, 2021, 19, 1744-1747.	2.8	22
59	Organoaluminum-promoted selective addition to fluorinated carbonyl compounds via pentacoordinate trialkylaluminum complexes. Tetrahedron Letters, 1998, 39, 7105-7108.	1.4	21
60	Efficient asymmetric catalysis of chiral organoaluminum complex for enantioselective ene reactions of aldehydes. Tetrahedron Letters, 2004, 45, 4481-4484.	1.4	20
61	Efficient synthetic protocol for substituted guanidines via copper(I)-mediated intermolecular amination of isothiourea derivatives. Journal of Organometallic Chemistry, 2007, 692, 545-549.	1.8	20
62	Molecular Design, Synthesis, and Asymmetric Catalysis of a Hexacoordinated Chiral Phosphate Ion. Journal of the American Chemical Society, 2018, 140, 2765-2768.	13.7	20
63	Photocatalytic borylcyclopropanation of α-boryl styrenes. Organic Chemistry Frontiers, 2019, 6, 1734-1737.	4.5	20
64	Unveiling Latent Photoreactivity of Imines. Angewandte Chemie - International Edition, 2020, 59, 3665-3670.	13.8	19
65	Vinylogy in nitronates: utilization of $\hat{l}\pm$ -aryl conjugated nitroolefins as a nucleophile for a highly stereoselective aza-Henry reaction. Chemical Communications, 2015, 51, 4437-4439.	4.1	18
66	Origin of High Regio-, Diastereo-, and Enantioselectivities in 1,6-Addition of Azlactones to Dienyl <i>N</i> -Acylpyrroles: A Computational Study. Journal of Organic Chemistry, 2017, 82, 541-548.	3.2	18
67	A Structurally Robust Chiral Borate Ion: Molecular Design, Synthesis, and Asymmetric Catalysis. Angewandte Chemie - International Edition, 2020, 59, 11456-11461.	13.8	18
68	Synthesis of α-trifluoromethylstyrene derivatives via Pd-catalyzed cross-coupling of 2-bromo-3,3,3-trifluoropropene and arylmagnesium bromides. Journal of Molecular Catalysis A, 2009, 302, 7-10.	4.8	17
69	[5.5]- <i>P</i> -Spirocyclic Chiral Triaminoiminophosphorane-Catalyzed Asymmetric Hydrophosphonylation of Aldehydes and Ynones. Bulletin of the Chemical Society of Japan, 2017, 90, 546-555.	3.2	16
70	Catalystâ€Enabled Siteâ€Divergent Stereoselective Michael Reactions: Overriding Intrinsic Reactivity of Enynyl Carbonyl Acceptors. Angewandte Chemie, 2018, 130, 4822-4826.	2.0	16
71	Allenedicarboxylate as a Stereochemically Labile Electrophile for Chiral Organic Base-catalyzed Stereoselective Michael Addition. Chemistry Letters, 2018, 47, 594-597.	1.3	15
72	Hypercoordination of aluminum: Evidence for the implication of pentacoordinate complexes in the R2AlCl-promoted reduction of alkoxycarbonyl substrates. Tetrahedron Letters, 1999, 40, 2993-2996.	1.4	13

#	Article	IF	CITATIONS
73	Chiral ammonium betaine-catalyzed asymmetric Mannich-type reaction of oxindoles. Beilstein Journal of Organic Chemistry, 2016, 12, 2099-2103.	2.2	13
74	Pentacoordinate vs. Tetracoordinate complexation for alkoxycarbonyl compounds with dialkylboron triflates and trifluoroacetates? Tetrahedron Letters, 1998, 39, 8105-8108.	1.4	12
75	Redox-regulated divergence in photocatalytic addition of $\hat{l}\pm$ -nitro alkyl radicals to styrenes. Chemical Communications, 2020, 56, 11014-11017.	4.1	12
76	Enantioselective Aza-Michael Addition to Conjugated Nitroenynes Catalyzed by Chiral Arylaminophosphonium Barfates. Synlett, 2011, 2011, 1265-1267.	1.8	11
77	Unique Synthetic Utility of BF3Â-OEt2in the Highly Diastereoselective Reduction of Hydroxy Carbonyl and Dicarbonyl Substrates. Organic Letters, 2000, 2, 2015-2017.	4.6	9
78	Site-Selective Conjugate Addition Through Catalytic Generation of Ion-Pairing Intermediates. Topics in Current Chemistry, 2015, 372, 55-83.	4.0	9
79	Formal Hydroformylation of \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carboxylic Acids under Photoexcited Ketone Catalysis. Chemistry Letters, 2019, 48, 715-717.	1.3	9
80	Asymmetric Synthesis of $\hat{l}\pm,\hat{l}\pm$ -Disubstituted $\hat{l}\pm$ -Amino Acids via Enantioselective Alkylation of Azlactones under Biphasic Conditions Using P-Spiro Chiral Tetraaminophosphonium Salts as a Phase-Transfer Catalyst. Synlett, 2009, 2009, 658-660.	1.8	8
81	The Practical Preparation of Chiral N-Sulfonyl Oxaziridines via Catalytic Asymmetric Payne Oxidation. Synthesis, 2014, 46, 871-878.	2.3	8
82	Chemistry of Ammonium Betaines: Application to Ion-Pair Catalysis for Selective Organic Transformations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 1144-1153.	0.1	8
83	Synthesis of Chiral Tetraaminophosphonium Chlorides from N-Boc a-Amino Acid Esters. Heterocycles, 2008, 76, 1081.	0.7	8
84	Chemistry of Chelate-Type Hypervalent Boron and Aluminum: Utilization for Selective Organic Synthesis Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2000, 58, 14-22.	0.1	8
85	Stereoselective Aza-Henry Reaction of 3-Nitro-dihydro-2(1H)-quinolones with N-Boc-Aldimines under the Catalysis of Chiral Ammonium Betaines. Heterocycles, 2017, 94, 441.	0.7	6
86	Fenton reagent-catalyzed trifluoromethylation of enamines of 3-oxocarboxylates with CF3I. Journal of Fluorine Chemistry, 2016, 181, 1-6.	1.7	5
87	A Structurally Robust Chiral Borate Ion: Molecular Design, Synthesis, and Asymmetric Catalysis. Angewandte Chemie, 2020, 132, 11553-11558.	2.0	2
88	Unveiling Latent Photoreactivity of Imines. Angewandte Chemie, 2020, 132, 3694-3699.	2.0	1
89	o-Quinone methide with overcrowded olefin component as a dehydridation catalyst under aerobic photoirradiation conditions. Chemical Science, 2021, 12, 2778-2783.	7.4	1
90	Lecture Tour upon Receiving the 10 th Lectureship Award MBLA. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 653-662.	0.1	1

#	Article	IF	CITATIONS
91	Regio- and Enantiospecific Rhodium-Catalyzed Arylation of Unsymmetrical Fluorinated Acyclic Allylic Carbonates: Inversion of Absolute Configuration ChemInform, 2003, 34, no.	0.0	O
92	Catalytic Asymmetric Allylation of Aldehydes and Related Reactions with Bis(((S)-binaphthoxy)(isopropoxy)titanium) Oxide as a $\hat{l}\frac{1}{4}$ -Oxo-Type Chiral Lewis Acid ChemInform, 2004, 35, no.	0.0	0
93	Chiral Broensted Acid-Catalyzed Direct Mannich Reactions via Electrophilic Activation ChemInform, 2004, 35, no.	0.0	0
94	Efficient Asymmetric Catalysis of Chiral Organoaluminum Complex for Enantioselective Ene Reactions of Aldehydes ChemInform, 2004, 35, no.	0.0	0
95	Organocatalytic Asymmetric Aza-Friedel?Crafts Alkylation of Furan ChemInform, 2005, 36, no.	0.0	O
96	Organocatalytic Asymmetric Direct Alkylation of α-Diazoester via C—H Bond Cleavage ChemInform, 2005, 36, no.	0.0	0
97	Inside Cover: Siteâ€Directed Asymmetric Quaternization of a Peptide Backbone at a Câ€Terminal Azlactone (Angew. Chem. Int. Ed. 4/2009). Angewandte Chemie - International Edition, 2009, 48, 620-620.	13.8	0
98	Titelbild: Catalystâ€Enabled Siteâ€Divergent Stereoselective Michael Reactions: Overriding Intrinsic Reactivity of Enynyl Carbonyl Acceptors (Angew. Chem. 17/2018). Angewandte Chemie, 2018, 130, 4519-4519.	2.0	0
99	o-Quinone methide with overcrowded olefinic core as a catalytically-active surrogate of triarylmethylium salt for dehydridative oxidation of benzylic alcohols under aerobic photoirradiation conditions. Tetrahedron, 2021, , 132459.	1.9	0