Matthew Whiteman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5546228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Measuring reactive species and oxidative damage <i>in vivo</i> and in cell culture: how should you do it and what do the results mean?. British Journal of Pharmacology, 2004, 142, 231-255.	5.4	1,839
2	Hydrogen sulfide is a novel mediator of lipopolysaccharideâ€induced inflammation in the mouse. FASEB Journal, 2005, 19, 1196-1198.	0.5	755
3	Characterization of a Novel, Water-Soluble Hydrogen Sulfide–Releasing Molecule (GYY4137). Circulation, 2008, 117, 2351-2360.	1.6	741
4	The novel neuromodulator hydrogen sulfide: an endogenous peroxynitrite â€~scavenger'?. Journal of Neurochemistry, 2004, 90, 765-768.	3.9	545
5	Chlorinative stress: An under appreciated mediator of neurodegeneration?. Cellular Signalling, 2007, 19, 219-228.	3.6	499
6	The gastrointestinal tract: A major site of antioxidant action?. Free Radical Research, 2000, 33, 819-830.	3.3	438
7	Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical Biology and Medicine, 2008, 45, 295-305.	2.9	379
8	Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Natural Product Reports, 2005, 22, 351.	10.3	372
9	Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochemical and Biophysical Research Communications, 2006, 343, 303-310.	2.1	350
10	The Effect of Hydrogen Sulfide Donors on Lipopolysaccharide-Induced Formation of Inflammatory Mediators in Macrophages. Antioxidants and Redox Signaling, 2010, 12, 1147-1154.	5.4	314
11	Regulation of vascular nitric oxide <i>in vitro</i> and <i>in vivo</i> ; a new role for endogenous hydrogen sulphide?. British Journal of Pharmacology, 2006, 149, 625-634.	5.4	311
12	Hydrogen sulphide: a novel inhibitor of hypochlorous acid-mediated oxidative damage in the brain?. Biochemical and Biophysical Research Communications, 2005, 326, 794-798.	2.1	297
13	A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxidants and Redox Signaling, 2019, 31, 1-38.	5.4	293
14	Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clinical Science, 2011, 121, 459-488.	4.3	272
15	Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Review of Clinical Pharmacology, 2011, 4, 13-32.	3.1	262
16	Nitric oxide and peroxynitrite. The ugly, the uglier and the not so good. Free Radical Research, 1999, 31, 651-669.	3.3	256
17	Hydrogen sulfide: environmental factor or signalling molecule?. Plant, Cell and Environment, 2013, 36, 1607-1616.	5.7	241
18	Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability?. Journal of Cellular and Molecular Medicine, 2009, 13, 488-507.	3.6	236

#	Article	IF	CITATIONS
19	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. Cell Metabolism, 2019, 30, 1152-1170.e13.	16.2	236
20	AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide - Biology and Chemistry, 2014, 41, 120-130.	2.7	225
21	GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radical Biology and Medicine, 2009, 47, 103-113.	2.9	220
22	Antioxidants in Chinese herbal medicines: a biochemical perspective. Natural Product Reports, 2004, 21, 478.	10.3	206
23	Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia, 2010, 53, 1722-1726.	6.3	205
24	Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. Journal of Applied Physiology, 2007, 102, 261-268.	2.5	204
25	Oxidative stress in autoimmune rheumatic diseases. Free Radical Biology and Medicine, 2018, 125, 3-14.	2.9	204
26	A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiology and Biochemistry, 2010, 48, 931-935.	5.8	196
27	Hydrogen sulfide and cell signaling: Team player or referee?. Plant Physiology and Biochemistry, 2014, 78, 37-42.	5.8	190
28	Improved tag-switch method reveals that thioredoxin acts as depersulfidase and controls the intracellular levels of protein persulfidation. Chemical Science, 2016, 7, 3414-3426.	7.4	175
29	Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide - Biology and Chemistry, 2014, 41, 38-47.	2.7	173
30	Ultrasound stimulates nitric oxide and prostaglandin e 2 production by human osteoblasts. Bone, 2002, 31, 236-241.	2.9	171
31	Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochemical and Biophysical Research Communications, 2005, 333, 1146-1152.	2.1	171
32	A Reassessment of the Peroxynitrite Scavenging Activity of Uric Acid. Annals of the New York Academy of Sciences, 2002, 962, 242-259.	3.8	161
33	Protection Against Peroxynitrite-Dependent Tyrosine Nitration and α ₁ -Antiproteinase Inactivation by Ascorbic Acid. A Comparison with other Biological Antioxidants. Free Radical Research, 1996, 25, 275-283.	3.3	157
34	Hypochlorous Acid-Induced Base Modifications in Isolated Calf Thymus DNA. Chemical Research in Toxicology, 1997, 10, 1240-1246.	3.3	157
35	Hypochlorous acid induces apoptosis of cultured cortical neurons through activation of calpains and rupture of lysosomes. Journal of Neurochemistry, 2006, 98, 1597-1609.	3.9	133
36	The role of H2S bioavailability in endothelial dysfunction. Trends in Pharmacological Sciences, 2015, 36, 568-578.	8.7	131

#	Article	IF	CITATIONS
37	Oxidative impairment in scrapie-infected mice is associated with brain metals perturbations and altered antioxidant activities. Journal of Neurochemistry, 2008, 79, 689-698.	3.9	130
38	Characterization of antioxidant and antiglycation properties and isolation of active ingredients from traditional chinese medicines. Free Radical Biology and Medicine, 2004, 36, 1575-1587.	2.9	126
39	Hydrogen sulfide is neuroprotective in Alzheimer's disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	124
40	Raised levels of F2-isoprostanes and prostaglandin F2alpha in different rheumatic diseases. Annals of the Rheumatic Diseases, 2001, 60, 627-631.	0.9	121
41	Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species. Annals of the New York Academy of Sciences, 2016, 1365, 5-14.	3.8	120
42	The novel mitochondria-targeted hydrogen sulfide (H 2 S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacological Research, 2016, 113, 186-198.	7.1	120
43	Antioxidant Action of Ergothioneine: Assessment of Its Ability to Scavenge Peroxynitrite. Biochemical and Biophysical Research Communications, 1997, 231, 389-391.	2.1	118
44	Hydrogen sulfide induced neuronal death occurs via glutamate receptor and is associated with calpain activation and lysosomal rupture in mouse primary cortical neurons. Neuropharmacology, 2007, 53, 505-514.	4.1	112
45	Hypochlorous acid-mediated mitochondrial dysfunction and apoptosis in human hepatoma HepC2 and human fetal liver cells: role of mitochondrial permeability transition. Free Radical Biology and Medicine, 2005, 38, 1571-1584.	2.9	108
46	Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology, 2005, 209, 105-113.	2.8	107
47	Nitrite-induced deamination and hypochlorite-induced oxidation of DNA in intact human respiratory tract epithelial cells. Free Radical Biology and Medicine, 2000, 28, 1039-1050.	2.9	105
48	Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H ₂ S a novel cytoprotective mediator in the inflamed joint?. Journal of Cellular and Molecular Medicine, 2012, 16, 896-910.	3.6	104
49	The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). MedChemComm, 2014, 5, 728-736.	3.4	104
50	5â€Sâ€Cysteinylâ€conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspaseâ€3 activity in neurons. Journal of Neurochemistry, 2002, 81, 122-129.	3.9	103
51	Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction. Life Sciences, 2005, 76, 2849-2860.	4.3	101
52	The complex effects of the slowâ€releasing hydrogen sulfide donor <scp>GYY</scp> 4137 in a model of acute joint inflammation and in human cartilage cells. Journal of Cellular and Molecular Medicine, 2013, 17, 365-376.	3.6	100
53	Cell Guidance in Tissue Engineering: SDF-1 Mediates Site-Directed Homing of Mesenchymal Stem Cells within Three-Dimensional Polycaprolactone Scaffolds. Tissue Engineering, 2007, 13, 2615-2624.	4.6	99
54	A high-throughput and sensitive methodology for the quantification of urinary 8-hydroxy-2′-deoxyguanosine: measurement with gas chromatography-mass spectrometry after single solid-phase extraction. Biochemical Journal, 2004, 380, 541-548.	3.7	98

#	Article	IF	CITATIONS
55	IKKβ programs to turn on the GADD45α–MKK4–JNK apoptotic cascade specifically via p50 NF-κB in arsenite response. Journal of Cell Biology, 2006, 175, 607-617.	5.2	98
56	Peroxynitrite mediates calciumâ€dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB Journal, 2004, 18, 1395-1397.	0.5	97
57	Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. Journal of Neurochemistry, 2005, 94, 943-956.	3.9	93
58	Regulation of Heart Function by Endogenous Gaseous Mediators—Crosstalk Between Nitric Oxide and Hydrogen Sulfide. Antioxidants and Redox Signaling, 2011, 14, 2081-2091.	5.4	92
59	AP39, A Mitochondrially Targeted Hydrogen Sulfide Donor, Exerts Protective Effects in Renal Epithelial Cells Subjected to Oxidative Stress in Vitro and in Acute Renal Injury in Vivo. Shock, 2016, 45, 88-97.	2.1	89
60	Hydrogen sulfide protects colon cancer cells from chemopreventative agent β-phenylethyl isothiocyanate induced apoptosis. World Journal of Gastroenterology, 2005, 11, 3990.	3.3	87
61	Hydrogen sulphide reduces insulin secretion from HIT-T15 cells by a KATP channel-dependent pathway. Journal of Endocrinology, 2007, 195, 105-112.	2.6	86
62	Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochemical Society Transactions, 2011, 39, 1226-1232.	3.4	85
63	The reaction of flavonoid metabolites with peroxynitrite. Biochemical and Biophysical Research Communications, 2006, 350, 960-968.	2.1	84
64	Hydrogen sulfide effects on stomatal apertures. Plant Signaling and Behavior, 2011, 6, 1444-1446.	2.4	83
65	Protection against peroxynitrite-dependent tyrosine nitration and \hat{I}_{\pm} 1 -antiproteinase inactivation by oxidized and reduced lipoic acid. FEBS Letters, 1996, 379, 74-76.	2.8	79
66	Modifiedâ€release hydrocortisone for circadian therapy: a proofâ€ofâ€principle study in dexamethasoneâ€suppressed normal volunteers. Clinical Endocrinology, 2008, 68, 130-135.	2.4	79
67	Pharmacological tools for hydrogen sulphide research: a brief, introductory guide for beginners. British Journal of Pharmacology, 2015, 172, 1633-1637.	5.4	79
68	Hydrogen Sulfide Inhibits Proliferation and Release of IL-8 from Human Airway Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 746-752.	2.9	77
69	Cytochrome <i>c</i> Reduction by H ₂ S Potentiates Sulfide Signaling. ACS Chemical Biology, 2018, 13, 2300-2307.	3.4	76
70	The Coenzyme Q10 Analog Decylubiquinone Inhibits the Redox-activated Mitochondrial Permeability Transition. Journal of Biological Chemistry, 2003, 278, 49079-49084.	3.4	75
71	Peroxynitrite-Dependent Aromatic Hydroxylation and Nitration of Salicylate and Phenylalanine. Is Hydroxyl Radical Involved?. Free Radical Research, 1997, 26, 71-82.	3.3	73
72	Factors Affecting the Ascorbate- and Phenolic-dependent Generation of Hydrogen Peroxide in Dulbecco's Modified Eagles Medium. Free Radical Research, 2003, 37, 1123-1130.	3.3	73

#	Article	IF	CITATIONS
73	β-Phenylethyl and 8-methylsulphinyloctyl isothiocyanates, constituents of watercress, suppress LPS induced production of nitric oxide and prostaglandin E2 in RAW 264.7 macrophages. Nitric Oxide - Biology and Chemistry, 2005, 12, 237-243.	2.7	72
74	Cardioprotection by H2S Donors: Nitric Oxide-Dependent and -Independent Mechanisms. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 431-440.	2.5	72
75	Prevention of Peroxynitrite-Dependent Tyrosine Nitration and Inactivation of α1-Antiproteinase by Antibiotics. Free Radical Research, 1997, 26, 49-56.	3.3	71
76	A Reevaluation of the Peroxynitrite Scavenging Activity of Some Dietary Phenolics. Biochemical and Biophysical Research Communications, 2000, 279, 692-699.	2.1	71
77	AP39, a mitochondria-targeting hydrogen sulfide (H ₂ S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. British Journal of Pharmacology, 2017, 174, 287-301.	5.4	69
78	Thiourea and Dimethylthiourea Inhibit Peroxynitrite-Dependent Damage: Nonspecificity as Hydroxyl Radical Scavengers. Free Radical Biology and Medicine, 1997, 22, 1309-1312.	2.9	66
79	The pro-inflammatory oxidant hypochlorous acid induces Bax-dependent mitochondrial permeabilisation and cell death through AIF-/EndoG-dependent pathways. Cellular Signalling, 2007, 19, 705-714.	3.6	66
80	Hypochlorous Acid-Induced DNA Base Modification: Potentiation by Nitrite: Biomarkers of DNA Damage by Reactive Oxygen Species. Biochemical and Biophysical Research Communications, 1999, 257, 572-576.	2.1	65
81	Hydrogen Sulfide Mitigates Myocardial Infarction <i>via</i> Promotion of Mitochondrial Biogenesis-Dependent M2 Polarization of Macrophages. Antioxidants and Redox Signaling, 2016, 25, 268-281.	5.4	64
82	Detection of hydrogen sulfide in plasma and kneeâ€joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Annals of the New York Academy of Sciences, 2010, 1203, 146-150.	3.8	63
83	The identification of antioxidants in dark soy sauce. Free Radical Research, 2007, 41, 479-488.	3.3	60
84	The Mitochondrial Permeability Transition Regulates Cytochrome c Release for Apoptosis during Endoplasmic Reticulum Stress by Remodeling the Cristae Junction. Journal of Biological Chemistry, 2008, 283, 3476-3486.	3.4	59
85	H2S during circulatory shock: Some unresolved questions. Nitric Oxide - Biology and Chemistry, 2014, 41, 48-61.	2.7	56
86	The redox regulation of intermediary metabolism by a superoxide-aconitase rheostat. BioEssays, 2004, 26, 894-900.	2.5	55
87	Anti-oxidative stress effects of Herba leonuri on ischemic rat hearts. Life Sciences, 2005, 76, 3043-3056.	4.3	54
88	Modulation of peroxynitrite-induced fibroblast injury by hesperetin: A role for intracellular scavenging and modulation of ERK signalling. Biochemical and Biophysical Research Communications, 2006, 347, 916-923.	2.1	54
89	Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia. British Journal of Pharmacology, 2015, 172, 1479-1493.	5.4	54
90	Pharmacological postconditioning against myocardial infarction with a slow-releasing hydrogen sulfide donor, GYY4137. Pharmacological Research, 2016, 111, 442-451.	7.1	54

#	Article	IF	CITATIONS
91	Mitochondria-targeted hydrogen sulfide attenuates endothelial senescence by selective induction of splicing factors HNRNPD and SRSF2. Aging, 2018, 10, 1666-1681.	3.1	54
92	Inhibition of hypochlorous acid-induced cellular toxicity by nitrite. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12061-12066.	7.1	53
93	Investigating the generation of hydrogen sulfide from the phosphonamidodithioate slow-release donor GYY4137. MedChemComm, 2015, 6, 1649-1655.	3.4	53
94	Phosphinodithioate and Phosphoramidodithioate Hydrogen Sulfide Donors. Handbook of Experimental Pharmacology, 2015, 230, 337-363.	1.8	52
95	Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat. British Journal of Pharmacology, 2006, 147, 966-974.	5.4	51
96	Dexamethasone inhibits lipopolysaccharideâ€induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. Journal of Cellular and Molecular Medicine, 2009, 13, 2684-2692.	3.6	51
97	Sulfite-mediated oxidative stress in kidney cells. Kidney International, 2004, 65, 393-402.	5.2	50
98	Leptin-Induced Endothelium-Dependent Vasorelaxation of Peripheral Arteries in Lean and Obese Rats: Role of Nitric Oxide and Hydrogen Sulfide. PLoS ONE, 2014, 9, e86744.	2.5	50
99	Scavenging of hydroxyl radicals but not of peroxynitrite by inhibitors and substrates of nitric oxide synthases. British Journal of Pharmacology, 1997, 122, 1702-1706.	5.4	48
100	Antioxidant Properties of S-Adenosyl-l-Methionine. Free Radical Biology and Medicine, 1997, 23, 1002-1008.	2.9	48
101	Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. Journal of Pathology, 2004, 203, 603-608.	4.5	48
102	Cytochrome bc1 Regulates the Mitochondrial Permeability Transition by Two Distinct Pathways. Journal of Biological Chemistry, 2004, 279, 50420-50428.	3.4	47
103	Mitochondria-targeted hydrogen sulfide donor AP39 improves neurological outcomes after cardiac arrest in mice. Nitric Oxide - Biology and Chemistry, 2015, 49, 90-96.	2.7	47
104	Loss of oxidized and chlorinated bases in DNA treated with reactive oxygen species: implications for assessment of oxidative damage in vivo. Biochemical and Biophysical Research Communications, 2002, 296, 883-889.	2.1	44
105	Effects of AP39, a novel triphenylphosphonium derivatised anethole dithiolethione hydrogen sulfide donor, on rat haemodynamic parameters and chloride and calcium Cav3 and RyR2 channels. Nitric Oxide - Biology and Chemistry, 2015, 46, 131-144.	2.7	44
106	HOCl causes necrotic cell death in human monocyte derived macrophages through calcium dependent calpain activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 420-429.	4.1	42
107	Thiols and disulphides can aggravate peroxynitrite-dependent inactivation of α1-antiproteinase. FEBS Letters, 1997, 414, 497-500.	2.8	41
108	DNA damage by nitrite and peroxynitrite: Protection by dietary phenols. Methods in Enzymology, 2001, 335, 296-307.	1.0	41

#	Article	IF	CITATIONS
109	Chronic exposure to U18666A is associated with oxidative stress in cultured murine cortical neurons. Journal of Neurochemistry, 2006, 98, 1278-1289.	3.9	40
110	Effects of natural products on ischemic heart diseases and cardiovascular system. Acta Pharmacologica Sinica, 2002, 23, 1142-51.	6.1	40
111	β-Phenylethyl isothiocyanate mediated apoptosis; contribution of Bax and the mitochondrial death pathway. International Journal of Biochemistry and Cell Biology, 2005, 37, 100-119.	2.8	39
112	Do Mitochondriotropic Antioxidants Prevent Chlorinative Stress-Induced Mitochondrial and Cellular Injury?. Antioxidants and Redox Signaling, 2008, 10, 641-650.	5.4	39
113	Nitrite-mediated protection against hypochlorous acid-induced chondrocyte toxicity: A novel cytoprotective role of nitric oxide in the inflamed joint?. Arthritis and Rheumatism, 2003, 48, 3140-3150.	6.7	38
114	Do Mitochondria make Nitric Oxide? No?. Free Radical Research, 2004, 38, 591-599.	3.3	38
115	Chronic exposure to U18666A induces apoptosis in cultured murine cortical neurons. Biochemical and Biophysical Research Communications, 2004, 315, 408-417.	2.1	38
116	Oxidative Damage in Mitochondrial DNA Is Not Extensive. Annals of the New York Academy of Sciences, 2005, 1042, 210-220.	3.8	38
117	Pharmacological actions of the slow release hydrogen sulfide donor GYY4137 on phenylephrine-induced tone in isolated bovine ciliary artery. Experimental Eye Research, 2013, 116, 350-354.	2.6	38
118	Involvement of Potassium Channels and Calcium-Independent Mechanisms in Hydrogen Sulfide-Induced Relaxation of Rat Mesenteric Small Arteries. Journal of Pharmacology and Experimental Therapeutics, 2015, 356, 53-63.	2.5	38
119	Nitric oxide protects against mitochondrial permeabilization induced by glutathione depletion: Role of S-nitrosylation?. Biochemical and Biophysical Research Communications, 2006, 339, 255-262.	2.1	37
120	Is Antioxidant Potential of the Mitochondrial Targeted Ubiquinone Derivative MitoQ Conserved in Cells Lacking mtDNA?. Antioxidants and Redox Signaling, 2008, 10, 651-660.	5.4	36
121	Hydrogen sulfide induces heme oxygenase-1 in human kidney cells. Acta Diabetologica, 2014, 51, 155-157.	2.5	36
122	Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization. Journal of Advanced Research, 2021, 27, 165-176.	9.5	36
123	Loss of 3-Nitrotyrosine on Exposure to Hypochlorous Acid: Implications for the Use of 3-Nitrotyrosine as a Bio-markerin Vivo. Biochemical and Biophysical Research Communications, 1999, 258, 168-172.	2.1	35
124	Lack of Tyrosine Nitration by Hypochlorous Acid in the Presence of Physiological Concentrations of Nitrite. Journal of Biological Chemistry, 2003, 278, 8380-8384.	3.4	35
125	Early induction of calpains in rotenone-mediated neuronal apoptosis. Neuroscience Letters, 2006, 397, 69-73.	2.1	35
126	Supplementing preservation solution with mitochondria-targeted H2S donor AP39 protects cardiac grafts from prolonged cold ischemia–reperfusion injury in heart transplantation. American Journal of Transplantation, 2019, 19, 3139-3148.	4.7	35

#	Article	IF	CITATIONS
127	Measurement of Reactive Oxygen Species in Cells and Mitochondria. Methods in Cell Biology, 2007, 80, 355-377.	1.1	34
128	H2S supplementation: A novel method for successful organ preservation at subnormothermic temperatures. Nitric Oxide - Biology and Chemistry, 2018, 81, 57-66.	2.7	34
129	GYY4137, a Slow-Releasing Hydrogen Sulfide Donor, Ameliorates Renal Damage Associated with Chronic Obstructive Uropathy. Journal of Urology, 2016, 196, 1778-1787.	0.4	33
130	Hydrogen Sulfide Attenuates Opioid Dependence by Suppression of Adenylate Cyclase/cAMP Pathway. Antioxidants and Redox Signaling, 2014, 20, 31-41.	5.4	32
131	Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy. Optics Express, 2011, 19, 17563.	3.4	31
132	Vascular Guidance: Microstructural Scaffold Patterning for Inductive Neovascularization. Stem Cells International, 2011, 2011, 1-6.	2.5	31
133	Renal Protective Effect of Hydrogen Sulfide in Cisplatin-Induced Nephrotoxicity. Antioxidants and Redox Signaling, 2018, 29, 455-470.	5.4	31
134	Gene profiling reveals hydrogen sulphide recruits death signaling via the Nâ€methylâ€ <scp>D</scp> â€aspartate receptor identifying commonalities with excitotoxicity. Journal of Cellular Physiology, 2011, 226, 1308-1322.	4.1	30
135	Lymphocytes from rheumatoid arthritis patients have elevated levels of intracellular peroxiredoxin 2, and a greater frequency of cells with exofacial peroxiredoxin 2, compared with healthy human lymphocytes. International Journal of Biochemistry and Cell Biology, 2012, 44, 1223-1231.	2.8	30
136	Hydrogen Sulfide Abrogates Hemoglobin-Lipid Interaction in Atherosclerotic Lesion. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	29
137	Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radical Biology and Medicine, 2013, 57, 79-91.	2.9	27
138	Mitochondrial hydrogen sulfide supplementation improves health in the <i>C. elegans</i> Duchenne muscular dystrophy model. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
139	The Slow-Releasing and Mitochondria-Targeted Hydrogen Sulfide (H2S) Delivery Molecule AP39 Induces Brain Tolerance to Ischemia. International Journal of Molecular Sciences, 2021, 22, 7816.	4.1	26
140	Inhibition of hypochlorous acid-induced oxidative reactions by nitrite: is nitrite an antioxidant?. Biochemical and Biophysical Research Communications, 2003, 303, 1217-1224.	2.1	24
141	Cardioprotective effects of nitroparacetamol and paracetamol in acute phase of myocardial infarction in experimental rats. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H517-H524.	3.2	24
142	Glial metabolism of quercetin reduces its neurotoxic potential. Archives of Biochemistry and Biophysics, 2008, 478, 195-200.	3.0	24
143	Inhibitory action of novel hydrogen sulfide donors on bovine isolated posterior ciliary arteries. Experimental Eye Research, 2015, 134, 73-79.	2.6	24
144	[35] Assessment of peroxynitrite scavengers in Vitro. Methods in Enzymology, 1999, 301, 333-342.	1.0	23

#	Article	IF	CITATIONS
145	Modulation of peroxynitrite- and hypochlorous acid-induced inactivation of $\hat{I}\pm 1$ -antiproteinase by mercaptoethylguanidine. British Journal of Pharmacology, 1999, 126, 1646-1652.	5.4	22
146	Loss of 3-chlorotyrosine by inflammatory oxidants: Implications for the use of 3-chlorotyrosine as a bio-marker in vivo. Biochemical and Biophysical Research Communications, 2008, 371, 50-53.	2.1	22
147	The Mitochondria-Targeted H2S-Donor AP39 in a Murine Model of Combined Hemorrhagic Shock and Blunt Chest Trauma. Shock, 2019, 52, 230-239.	2.1	22
148	Mechanism of cell death induced by an antioxidant extract of Cratoxylum cochinchinense (YCT) in Jurkat T cells: the role of reactive oxygen species and calcium. Free Radical Biology and Medicine, 2004, 36, 1588-1611.	2.9	20
149	Intracellular glutathione protects human monocyte-derived macrophages from hypochlorite damage. Life Sciences, 2012, 90, 682-688.	4.3	20
150	Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Medicine Experimental, 2018, 6, 41.	1.9	20
151	An Appraisal of Developments in Allium Sulfur Chemistry: Expanding the Pharmacopeia of Garlic. Molecules, 2019, 24, 4006.	3.8	20
152	Impact of theophylline/corticosteroid combination therapy on sputum hydrogen sulfide levels in patients with COPD. European Respiratory Journal, 2014, 43, 1504-1506.	6.7	19
153	Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease. British Journal of Pharmacology, 2020, 177, 793-809.	5.4	19
154	Increased iron staining in the cerebral cortex of cholesterol fed rabbits. Mechanisms of Ageing and Development, 2004, 125, 305-313.	4.6	18
155	Metabolic, Cardiac, and Renal Effects of the Slow Hydrogen Sulfide-Releasing Molecule GYY4137 During Resuscitated Septic Shock in Swine with Pre-Existing Coronary Artery Disease. Shock, 2017, 48, 175-184.	2.1	17
156	Inhibition of peroxynitrite-mediated cellular toxicity, tyrosine nitration, and α1-antiproteinase inactivation by 3-mercapto-2-methylpentan-1-ol, a novel compound isolated from Alliumcepa. Biochemical and Biophysical Research Communications, 2003, 302, 397-402.	2.1	15
157	Mercaptoethylguanidine Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Expressions Induced in Rats After Fluid-Percussion Brain Injury. Journal of Trauma, 2005, 59, 448-455.	2.3	14
158	Daily therapy with a slow-releasing H 2 S donor GYY4137 enables early functional recovery and ameliorates renal injury associated with urinary obstruction. Nitric Oxide - Biology and Chemistry, 2018, 76, 16-28.	2.7	14
159	Extended hypoxiaâ€mediated H ₂ S production provides for longâ€term oxygen sensing. Acta Physiologica, 2020, 228, e13368.	3.8	14
160	Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxidants and Redox Signaling, 2021, 35, 551-579.	5.4	14
161	Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. Journal of Controlled Release, 2022, 348, 321-334.	9.9	14
162	Detection and Measurement of Reactive Oxygen Intermediates in Mitochondria and Cells. Methods in Molecular Biology, 2008, 476, 28-49.	0.9	13

#	Article	IF	CITATIONS
163	Subnormothermic Perfusion with H2S Donor AP39 Improves DCD Porcine Renal Graft Outcomes in an Ex Vivo Model of Kidney Preservation and Reperfusion. Biomolecules, 2021, 11, 446.	4.0	13
164	GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and KV7 Channel Blockers in Rat Small Mesenteric Arteries. Frontiers in Pharmacology, 2021, 12, 613989.	3.5	13
165	Diet and Hydrogen Sulfide Production in Mammals. Antioxidants and Redox Signaling, 2021, 34, 1378-1393.	5.4	13
166	Evaluating the Effects of Subnormothermic Perfusion with AP39 in a Novel Blood-Free Model of Ex Vivo Kidney Preservation and Reperfusion. International Journal of Molecular Sciences, 2021, 22, 7180.	4.1	13
167	Mitochondria-Targeted Hydrogen Sulfide Delivery Molecules Protect Against UVA-Induced Photoaging in Human Dermal Fibroblasts, and in Mouse Skin <i>In Vivo</i> . Antioxidants and Redox Signaling, 2022, 36, 1268-1288.	5.4	12
168	Oltipraz-induced phase 2 enzyme response conserved in cells lacking mitochondrial DNA. Biochemical and Biophysical Research Communications, 2005, 337, 375-381.	2.1	11
169	Temporal transcriptomic profiling reveals cellular targets that govern survival in HOCl-mediated neuronal apoptosis. Life Sciences, 2010, 87, 457-467.	4.3	10
170	The mitochondriaâ€ŧargeted hydrogen sulfide donor AP39 improves health and mitochondrial function in a C. elegans primary mitochondrial disease model. Journal of Inherited Metabolic Disease, 2021, 44, 367-375.	3.6	10
171	Protective effects of Asian green vegetables against oxidant induced cytotoxicity. World Journal of Gastroenterology, 2005, 11, 7607.	3.3	10
172	Alone NO Longer. Advances in Botanical Research, 2016, 77, 1-14.	1.1	8
173	Effects of <i>Salvia miltiorrhiza</i> After Acute Myocardial Infarction in Rats. , 2004, , 183-195.		8
174	Reaction of the Radical Pair NO ₂ [•] and CO ₃ ^{•-} with 2-[6-(4â€~-Amino)phenoxy-3 <i>H</i> -xanthen-3-on-9-yl]benzoic Acid (APF). Journal of Physical Chemistry A, 2007, 111, 8202-8210.	2.5	6
175	Boronâ€Doped Diamond Dualâ€Plate Deepâ€Microtrench Device for Generatorâ€Collector Sulfide Sensing. Electroanalysis, 2015, 27, 2645-2653.	2.9	6
176	Hydrogen Sulfide Is a Novel Protector of the Retinal Glycocalyx and Endothelial Permeability Barrier. Frontiers in Cell and Developmental Biology, 2021, 9, 724905.	3.7	6
177	The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals, 2021, 14, 992.	3.8	6
178	Hydrogen Sulfide and Reactive Friends: The Interplay with Reactive Oxygen Species and Nitric Oxide Signalling Pathways. Proceedings of the International Plant Sulfur Workshop, 2015, , 153-168.	0.1	5
179	Chlorination and Nitration of DNA and Nucleic Acid Components. , 2007, , 14-39.		5
180	Determination of S-Nitrosothiols in Biological and Clinical Samples Using Electron Paramagnetic Resonance Spectrometry with Spin Trapping. Methods in Enzymology, 2008, 441, 151-160.	1.0	4

#	Article	IF	CITATIONS
181	Multifaceted role of nitric oxide in anâ€, <i>in vitro</i> â€,mouse neuronal injury model: transcriptomic profiling defines the temporal recruitment of death signalling cascades. Journal of Cellular and Molecular Medicine, 2012, 16, 41-58.	3.6	4
182	RT01, A Novel Derivative of the Mitochondria-targeted Hydrogen Sulfide Donor AP39, Reversed Hyperglycaemia-induced Mitochondrial Dysfunction in Murine Brain Microvascular Endothelial Cells. Free Radical Biology and Medicine, 2017, 112, 157-158.	2.9	4
183	Investigating ROS, RNS, and H2S-Sensitive Signaling Proteins. Methods in Molecular Biology, 2019, 1990, 27-42.	0.9	4
184	Effect of hydrogen sulfide on glycolysisâ€based energy production in mouse erythrocytes. Journal of Cellular Physiology, 2022, 237, 763-773.	4.1	4
185	Vasorelaxant Activity of AP39, a Mitochondria-Targeted H2S Donor, on Mouse Mesenteric Artery Rings In Vitro. Biomolecules, 2022, 12, 280.	4.0	4
186	Bioactive S-Alk(en)yl Cysteine Sulfoxide Metabolites in the Genus Allium: The Chemistry of Potential Therapeutic Agents. ChemInform, 2005, 36, no.	0.0	2
187	2nd European Conference on the Biology of Hydrogen Sulfide, Exeter, England 8th–11th September 2013. Nitric Oxide - Biology and Chemistry, 2014, 41, 1-3.	2.7	2
188	Equations to Support Redox Experimentation. Methods in Molecular Biology, 2019, 1990, 183-195.	0.9	2
189	Hydrogen Sulfide and Nitric Oxide Crosstalk: Evidence for Hydrogen Sulfide Mediated Nitric Oxide Production from Nitrite. Free Radical Biology and Medicine, 2010, 49, S117.	2.9	1
190	Reactive Oxygen Species. , 2016, , 1145-1150.		1
191	Catching tau in the act. Journal of Alzheimer's Disease, 2003, 5, 79-80.	2.6	0
192	Contrasting Effects of â€ ⁻ Fast' and â€ ⁻ Slow' Releasing H2S Donors on β Cell Viability in the DiabeticMilie Free Radical Biology and Medicine, 2010, 49, S43.	^{U.} 2.9	0
193	Hydrogen Sulfide Inhibits Proliferation and Release of IL-8 from Human Airway Smooth Muscle Cells. Free Radical Biology and Medicine, 2010, 49, S52.	2.9	0
194	Peroxiredoxin 2 in Human Inflammatory Joint Disease. Free Radical Biology and Medicine, 2010, 49, S151.	2.9	0
195	Mitochondria-Targeted Slow Release Hydrogen Donors: A Novel Link to an Old 'tail'?. Free Radical Biology and Medicine, 2012, 53, S121.	2.9	0
196	Slow release hydrogen sulfide donors and inflammation: A novel therapeutic opportunity. Free Radical Biology and Medicine, 2013, 65, S7-S8.	2.9	0
197	P104 Inhibition of platelet aggregation in vitro and in vivo by the H2S releasing compound GYY4137. Nitric Oxide - Biology and Chemistry, 2014, 39, S47.	2.7	0
198	MP58-18 EXOGENOUS HYDROGEN SULFIDE TREATMENT REDUCES RENAL FIBROSIS ASSOCIATED WITH CHRONIC URETERAL OBSTRUCTION BY ATTENUATING EPITHELIAL-MESENCHYMAL TRANSITION. Journal of Urology, 2016, 195, .	0.4	0

#	Article	IF	CITATIONS
199	MP19-09 DAILY HYDROGEN SULFIDE THERAPY DURING PROLONGED URETERIC OBSTRUCTION ENABLES EARLY RENAL RECOVERY FOLLOWING DECOMPRESSION. Journal of Urology, 2017, 197, .	0.4	0
200	AP39 Mitigates the Effects of Normothermic Organ Preservation and Ex Vivo Renal Transplantation following Donation after Cardiac Death. Free Radical Biology and Medicine, 2017, 112, 133.	2.9	0
201	21°C is the New Normothermia for Organ Preservation in the Presence of H 2 S. Free Radical Biology and Medicine, 2017, 112, 133.	2.9	0
202	Postconditioning with H 2 S donors: effect on reperfusion-induced ventricular arrhythmias. Journal of Molecular and Cellular Cardiology, 2017, 112, 142.	1.9	0
203	Reactive Oxygen Species. , 2014, , 1-6.		0
204	Relaxation of Porcine Isolated Irides by Novel Hydrogen Sulfideâ€Releasing Compounds. FASEB Journal, 2018, 32, 829.1.	0.5	0