George S Deepe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554562/publications.pdf

Version: 2024-02-01

101543 138484 3,904 102 36 citations h-index papers

g-index 102 102 102 3926 docs citations times ranked citing authors all docs

58

#	Article	IF	CITATIONS
1	Granulocyte Macrophage-Colony Stimulating Factor Induced Zn Sequestration Enhances Macrophage Superoxide and Limits Intracellular Pathogen Survival. Immunity, 2013, 39, 697-710.	14.3	208
2	Advances in combating fungal diseases: vaccines on the threshold. Nature Reviews Microbiology, 2007, 5, 13-28.	28.6	201
3	Adaptive Immunity to Fungi. Annual Review of Immunology, 2012, 30, 115-148.	21.8	181
4	Vaccine Immunity to Pathogenic Fungi Overcomes the Requirement for CD4 Help in Exogenous Antigen Presentation to CD8+ T Cells. Journal of Experimental Medicine, 2003, 197, 1405-1416.	8. 5	174
5	Metallothioneins: Emerging Modulators in Immunity and Infection. International Journal of Molecular Sciences, 2017, 18, 2197.	4.1	155
6	Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. Journal of Clinical Investigation, 2003, 112, 1164-1175.	8. 2	153
7	<i>Histoplasma capsulatum</i> , lung infection and immunity. Future Microbiology, 2015, 10, 967-975.	2.0	124
8	Adaptive Immunity to Fungi. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019612-a019612.	6.2	85
9	The CCL7-CCL2-CCR2 Axis Regulates IL-4 Production in Lungs and Fungal Immunity. Journal of Immunology, 2009, 183, 1964-1974.	0.8	84
10	Evolution of the Primary Immune Response to <i>Histoplasma capsulatum</i> in Murine Lung. Infection and Immunity, 1998, 66, 1473-1481.	2.2	78
11	Regulation of Immunoproteasome Subunit Expression In Vivo Following Pathogenic Fungal Infection. Journal of Immunology, 2002, 169, 3046-3052.	0.8	75
12	Metallomic Analysis of Macrophages Infected with <i>Histoplasma capsulatum</i> Reveals a Fundamental Role for Zinc in Host Defenses. Journal of Infectious Diseases, 2010, 202, 1136-1145.	4.0	74
13	Neutralization of endogenous granulocyte-macrophage colony-stimulating factor subverts the protective immune response to Histoplasma capsulatum. Journal of Immunology, 1999, 163, 4985-93.	0.8	74
14	Cellular and Molecular Regulation of Vaccination with Heat Shock Protein 60 from Histoplasma capsulatum. Infection and Immunity, 2002, 70, 3759-3767.	2.2	72
15	CCR5 Dictates the Equilibrium of Proinflammatory IL-17+ and Regulatory Foxp3+ T Cells in Fungal Infection. Journal of Immunology, 2010, 184, 5224-5231.	0.8	69
16	IL-10–producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. Science Advances, 2020, 6, eabb0806.	10.3	67
17	Modulation of Infection with Histoplasma capsulatum by Inhibition of Tumor Necrosis Factor–α Activity. Clinical Infectious Diseases, 2005, 41, S204-S207.	5.8	66
18	Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nature Microbiology, 2018, 3, 791-803.	13.3	66

#	Article	IF	CITATIONS
19	Interleukins 17 and 23 Influence the Host Response to <i>Histoplasma capsulatum </i> . Journal of Infectious Diseases, 2009, 200, 142-151.	4.0	64
20	Immunological orchestration of zinc homeostasis: The battle between host mechanisms and pathogen defenses. Archives of Biochemistry and Biophysics, 2016, 611, 66-78.	3.0	64
21	The role of cytokines and chemokines in Histoplasma capsulatum infection. Cytokine, 2012, 58, 112-117.	3.2	61
22	Zinc Induces Dendritic Cell Tolerogenic Phenotype and Skews Regulatory T Cell–Th17 Balance. Journal of Immunology, 2016, 197, 1864-1876.	0.8	61
23	Macrophage Function in the Pathogenesis of Non-alcoholic Fatty Liver Disease: The Mac Attack. Frontiers in Immunology, 2019, 10, 2893.	4.8	58
24	Regulation of Infection with <i>Histoplasma capsulatum</i> by TNFR1 and -2. Journal of Immunology, 2000, 165, 2657-2664.	0.8	57
25	<i>Histoplasma capsulatum</i> manifests preferential invasion of phagocytic subpopulations in murine lungs. Journal of Leukocyte Biology, 2008, 84, 669-678.	3.3	52
26	Vaccination with Heat Shock Protein 60 Induces a Protective Immune Response against Experimental <i>Paracoccidioides brasiliensis </i> Pulmonary Infection. Infection and Immunity, 2008, 76, 4214-4221.	2.2	52
27	The Protective Immune Response to Heat Shock Protein 60 of <i>Histoplasma capsulatum </i> Is Mediated by a Subset of VÎ ² 8.1/8.2+ T Cells. Journal of Immunology, 2002, 169, 5818-5826.	0.8	51
28	Innate and adaptive determinants of host susceptibility to medically important fungi. Current Opinion in Microbiology, 2003, 6, 344-350.	5.1	50
29	Leukotrienes Are Potent Adjuvant during Fungal Infection: Effects on Memory T Cells. Journal of Immunology, 2008, 181, 8544-8551.	0.8	49
30	<i>Hc</i> Zrt2, a zinc responsive gene, is indispensable for the survival of <i>Histoplasma capsulatum in vivo</i> . Medical Mycology, 2016, 54, 865-875.	0.7	46
31	Immune response to early and late Histoplasma capsulatum infections. Current Opinion in Microbiology, 2000, 3, 359-362.	5.1	45
32	Protective and Memory Immunity to <i>Histoplasma capsulatum</i> in the Absence of IL-10. Journal of Immunology, 2003, 171, 5353-5362.	0.8	44
33	TNF-α Antagonism Generates a Population of Antigen-Specific CD4+CD25+ T Cells That Inhibit Protective Immunity in Murine Histoplasmosis. Journal of Immunology, 2008, 180, 1088-1097.	0.8	42
34	Apoptosis modulates protective immunity to the pathogenic fungus Histoplasma capsulatum. Journal of Clinical Investigation, 2005, 115, 2875-2885.	8.2	40
35	T Cells Require Tumor Necrosis Factor–α to Provide Protective Immunity in Mice Infected withHistoplasma capsulatum. Journal of Infectious Diseases, 2006, 193, 322-330.	4.0	39
36	Interleukinâ€1 and Host Control of Pulmonary Histoplasmosis. Journal of Infectious Diseases, 2006, 194, 855-864.	4.0	39

#	Article	IF	CITATIONS
37	IL-4 Induces Metallothionein 3- and SLC30A4-Dependent Increase in Intracellular Zn 2+ that Promotes Pathogen Persistence in Macrophages. Cell Reports, 2016, 16, 3232-3246.	6.4	38
38	Protective Efficacy of H Antigen from Histoplasma capsulatum in a Murine Model of Pulmonary Histoplasmosis. Infection and Immunity, 2001, 69, 3128-3134.	2.2	37
39	Inverse Correlation between IL-10 and HIF- \hat{l}_{\pm} in Macrophages Infected with <i>Histoplasma capsulatum</i> . Journal of Immunology, 2016, 197, 565-579.	0.8	36
40	Antifungal Tc17 cells are durable and stable, persisting as long-lasting vaccine memory without plasticity towards IFN \hat{I}^3 cells. PLoS Pathogens, 2017, 13, e1006356.	4.7	36
41	Preventative and therapeutic vaccines for fungal infections: from concept to implementation. Expert Review of Vaccines, 2004, 3, 701-709.	4.4	34
42	Progress in vaccination for histoplasmosis and blastomycosis: Coping with cellular immunity. Medical Mycology, 2005, 43, 381-389.	0.7	34
43	Deciphering the Pathways of Death of <i>Histoplasma capsulatum</i> Inplications for the Immunopathogenesis of Early Infection. Journal of Immunology, 2012, 188, 334-344.	0.8	33
44	Outbreaks of histoplasmosis: The spores set sail. PLoS Pathogens, 2018, 14, e1007213.	4.7	33
45	Transcription Factor KLF2 in Dendritic Cells Downregulates Th2 Programming via the HIF-1 \hat{l} ±/Jagged2/Notch Axis. MBio, 2016, 7, .	4.1	32
46	Novel Strategies to Enhance Vaccine Immunity against Coccidioidomycosis. PLoS Pathogens, 2013, 9, e1003768.	4.7	30
47	Selectivity and specificity of small molecule fluorescent dyes/probes used for the detection of Zn ²⁺ and Ca ²⁺ in cells. Metallomics, 2014, 6, 301-315.	2.4	30
48	Overexpression of Interleukin-4 in Lungs of Mice Impairs Elimination of Histoplasma capsulatum. Infection and Immunity, 2003, 71, 3787-3793.	2.2	29
49	Zinc Sequestration: Arming Phagocyte Defense against Fungal Attack. PLoS Pathogens, 2013, 9, e1003815.	4.7	29
50	Metallothionein 3 Controls the Phenotype and Metabolic Programming of Alternatively Activated Macrophages. Cell Reports, 2019, 27, 3873-3886.e7.	6.4	29
51	Vaccination with an alkaline extract of Histoplasma capsulatum packaged in glucan particles confers protective immunity in mice. Vaccine, 2018, 36, 3359-3367.	3.8	26
52	Interleukin-12 Neutralization Alters Lung Inflammation and Leukocyte Expression of CD80, CD86, and Major Histocompatibility Complex Class II in Mice Infected with Histoplasma capsulatum. Infection and Immunity, 2000, 68, 2069-2076.	2.2	25
53	Recombinant Murine Granulocyte-Macrophage Colony-Stimulating Factor Modulates the Course of Pulmonary Histoplasmosis in Immunocompetent and Immunodeficient Mice. Antimicrobial Agents and Chemotherapy, 2000, 44, 3328-3336.	3.2	24
54	An Aberrant Thymus in CCR5â^'/â^' Mice Is Coupled with an Enhanced Adaptive Immune Response in Fungal Infection. Journal of Immunology, 2011, 186, 5949-5955.	0.8	24

#	Article	IF	CITATIONS
55	Antigen-Presenting Dendritic Cells Rescue CD4-Depleted CCR2 ^{â^'/â^'} Mice from Lethal <i>Histoplasma capsulatum</i> Infection. Infection and Immunity, 2010, 78, 2125-2137.	2.2	20
56	$\hat{V}^21 + \hat{J}^21.1 + \hat{V}^22 + \hat{J}^249 + \text{CD4} + \text{T}$ Cells Mediate Resistance against Infection with Blastomyces dermatitidis. Infection and Immunity, 2007, 75, 193-200.	2.2	19
57	Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora. Toxicology in Vitro, 2016, 35, 24-30.	2.4	19
58	Metabolism of Gluconeogenic Substrates by an Intracellular Fungal Pathogen Circumvents Nutritional Limitations within Macrophages. MBio, 2020, 11 , .	4.1	19
59	$\hat{V^2}$ 6+and $\hat{V^2}$ 4+T Cells Exert Cooperative Activity in Clearance of Secondary Infection with Histoplasma capsulatum. Journal of Immunology, 2001, 166, 2855-2862.	0.8	18
60	Tumor Necrosis Factor Inhibition and Opportunistic Infections. Clinical Infectious Diseases, 2005, 41, S187-S188.	5.8	18
61	A Deficiency in Gamma Interferon or Interleukin-10 Modulates T-Cell-Dependent Responses to Heat Shock Protein 60 from Histoplasma capsulatum. Infection and Immunity, 2005, 73, 2129-2134.	2.2	18
62	Antifungal Activity of the Lipophilic Antioxidant Ferrostatinâ€1. ChemBioChem, 2017, 18, 2069-2078.	2.6	18
63	Elevated Circulating Concentrations of Interferon-Gamma in Latent Tuberculosis Infection. Pathogens and Immunity, 2016, 1, 291.	3.1	18
64	Expression of Hygromycin Phosphotransferase Alters Virulence of <i>Histoplasma capsulatum</i> Eukaryotic Cell, 2007, 6, 2066-2071.	3.4	17
65	CD4+CTLs in Fibrosing Mediastinitis Linked to <i>Histoplasma capsulatum</i> . Journal of Immunology, 2021, 206, 524-530.	0.8	17
66	Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunology, 2021, 14, 1224-1234.	6.0	16
67	Tumor Necrosis Factor Alpha Antagonism Reveals a Gut/Lung Axis That Amplifies Regulatory T Cells in a Pulmonary Fungal Infection. Infection and Immunity, 2018, 86, .	2.2	15
68	The HIF-1α/LC3-II Axis Impacts Fungal Immunity in Human Macrophages. Infection and Immunity, 2019, 87, .	2.2	15
69	Histoplasma capsulatum (Histoplasmosis)., 2015,, 2949-2962.e1.		14
70	Pulmonary VÎ ² 4+T Cells fromHistoplasma capsulatum–Infected Mice Respond to a Homologue of Sec31 That Confers a Protective Response. Journal of Infectious Diseases, 2006, 193, 888-897.	4.0	13
71	Functional Properties of the T Cell Receptor Repertoire in Responding to the Protective Domain of Heatâ€Shock Protein 60 fromHistoplasma capsulatum. Journal of Infectious Diseases, 2002, 186, 815-822.	4.0	12
72	Recognition of <i>Histoplasma capsulatum</i> yeast-cell antigens by human lymphocytes and human T-cell clones. Journal of Leukocyte Biology, 1992, 51, 432-436.	3.3	11

#	Article	lF	CITATIONS
73	$\hat{Vl^2}6+T$ Cells Are Obligatory for Vaccine-Induced Immunity toHistoplasma capsulatum. Journal of Immunology, 2001, 167, 2219-2226.	0.8	11
74	Crosstalk Between Autophagy and Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ in Antifungal Immunity. Cells, 2020, 9, 2150.	4.1	11
75	Tumor Necrosis Factor-α and Host Resistance to the Pathogenic Fungus, Histoplasma capsulatum. Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 34-37.	0.8	10
76	The intersection of host and fungus through the zinc lens. Current Opinion in Microbiology, 2019, 52, 35-40.	5.1	10
77	Impact of HIF- \hat{l} ± and hypoxia on fungal growth characteristics and fungal immunity. Microbes and Infection, 2017, 19, 204-209.	1.9	9
78	Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with \hat{l}^2 -Lactam Antimicrobials. MBio, 2021, 12, .	4.1	9
79	Requirements for Histoplasmin Presentation by Accessory Cells to a <i>Histoplasma capsulatum</i> -Reactive T-Cell Line. Journal of Leukocyte Biology, 1989, 45, 105-113.	3.3	8
80	Investigation of an optimal cell lysis method for the study of the zinc metalloproteome of Histoplasma capsulatum. Analytical and Bioanalytical Chemistry, 2017, 409, 6163-6172.	3.7	8
81	Mycobacterium bovis Bacille-Calmette-Gu \tilde{A} @rin Infection Aggravates Atherosclerosis. Frontiers in Immunology, 2020, 11, 607957.	4.8	8
82	A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. Journal of Clinical Investigation, $2021, 131, \ldots$	8.2	8
83	Discordance between T-Cell Receptor Expression and Effector Function in Mice Infected with Histoplasma capsulatum. Infection and Immunity, 2002, 70, 1648-1652.	2.2	5
84	CCR5 Deficiency Mitigates the Deleterious Effects of Tumor Necrosis Factor α Antagonism in Murine Histoplasmosis. Journal of Infectious Diseases, 2012, 205, 955-963.	4.0	5
85	Restraint of Fumarate Accrual by HIF- \hat{l} ± Preserves miR-27a-Mediated Limitation of Interleukin 10 during Infection of Macrophages by Histoplasma capsulatum. MBio, 2021, 12, e0271021.	4.1	5
86	Molecular Cloning, Characterization, and Expression of the M Antigen of Histoplasma capsulatum. Infection and Immunity, 1999, 67, 1947-1953.	2.2	4
87	GM-CSF and IL-33 Orchestrate Polynucleation and Polyploidy of Resident Murine Alveolar Macrophages in a Murine Model of Allergic Asthma. International Journal of Molecular Sciences, 2020, 21, 7487.	4.1	3
88	Tumor necrosis factor- $\hat{l}\pm$ inhibitors and granulomatous infectious. Drug Discovery Today Disease Mechanisms, 2006, 3, 295-300.	0.8	2
89	Tumor Necrosis Factor-αAntagonism by the Murine Tumor Necrosis Factor-αReceptor 2-Fc Fusion Protein Exacerbates Histoplasmosis in Mice. Journal of Interferon and Cytokine Research, 2007, 27, 471-480.	1.2	2
90	Aeroallergens Exacerbate <i>Histoplasma capsulatum</i> Infection. Journal of Immunology, 2018, 201, 3352-3361.	0.8	2

#	Article	IF	CITATIONS
91	Type I Interferons Rule with an Iron Fist. Cell Host and Microbe, 2020, 27, 317-319.	11.0	2
92	The Metallothionein-Zinc Landscape: How It Shapes Antimicrobial Immunity., 2019,, 57-77.		2
93	The Innate and Adaptive Immune Response to Pulmonary Histoplasma capsulatum Infection. , 2005 , , $85\text{-}112$.		1
94	Fungal Vaccine Development., 0,, 565-581.		1
95	Notch regulates <i>Histoplasma capsulatum </i> li>clearance in mouse lungs during innate and adaptive immune response phases in primary infection. Journal of Leukocyte Biology, 2022, 112, 1137-1154.	3.3	1
96	Polyfunctional antigen specific CD4 \hat{A}_{\pm} T cell responses in Patients with HIV/AIDS and Histoplasmosis Immune Reconstitution Inflammatory Syndrome. Clinical Infectious Diseases, 0, , .	5. 8	1
97	The interface between virulence and host response to the pathogenic fungus Histoplasma capsulatum. Current Fungal Infection Reports, 2008, 2, 159-164.	2.6	0
98	Control of the Host Response to Histoplasma Capsulatum. , 2012, , 99-120.		0
99	Pathogen–Host Interaction of Histoplasma capsulatum: an Update. Current Fungal Infection Reports, 2016, 10, 153-162.	2.6	0
100	Histoplasma capsulatum and Histoplasmosis. , 2017, , 139-167.		0
101	Soluble Mediators in the Host Response to Histoplasma Capsulatum. , 2004, , 207-223.		0
102	NADPH oxidase regulates efficacy of vaccination in aspergillosis. Journal of Clinical Investigation, 2012, 122, 1608-1611.	8.2	0