Gaoke Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5545201/publications.pdf Version: 2024-02-01

GAORE FENC

#	Article	IF	CITATIONS
1	Elevated Plasma Angiopoietinlike Protein 5 (ANGPTL5) Is More Positively Associated with Glucose Metabolism Disorders in Patients with Metabolic Syndrome. Medical Science Monitor, 2021, 27, e929626.	1.1	0
2	Evaluation of Inflammatory and Calcification after Implantation of Bioabsorbable Poly-L-Lactic Acid/Amorphous Calcium Phosphate Scaffolds in Porcine Coronary Arteries. Journal of Nanomaterials, 2021, 2021, 1-8.	2.7	6
3	An altered left ventricle protein profile in human ischemic cardiomyopathy revealed in comparative quantitative proteomics. Kardiologia Polska, 2019, 77, 951-959.	0.6	7
4	Evaluation of Long-Term Inflammatory Responses after Implantation of a Novel Fully Bioabsorbable Scaffold Composed of Poly-L-lactic Acid and Amorphous Calcium Phosphate Nanoparticles. Journal of Nanomaterials, 2018, 2018, 1-9.	2.7	7
5	GW29-e0213 Preclinical Evaluation of Poly-L-Lactic Acid/Amorphous Calcium Phosphate Scaffolds in Porcine Coronary Arteries. Journal of the American College of Cardiology, 2018, 72, C77-C78.	2.8	Ο
6	Effect of novel bioresorbable scaffold composed of poly-l-lactic acid and amorphous calcium phosphate nanoparticles on inflammation and calcification of surrounding tissues after implantation. Journal of Materials Science: Materials in Medicine, 2018, 29, 112.	3.6	12
7	Six-month evaluation of novel bioabsorbable scaffolds composed of poly-L-lactic acid and amorphous calcium phosphate nanoparticles in porcine coronary arteries. Journal of Biomaterials Applications, 2018, 33, 227-233.	2.4	4
8	Sirtuin 1 activation and cardioprotective role: Thy eternal summer shall not fade. International Journal of Cardiology, 2017, 247, 29.	1.7	7
9	A potential and novel therapeutic approach to ischemic heart diseases: Notch3. International Journal of Cardiology, 2017, 246, 58.	1.7	0
10	A potential and lionhearted soldier for atrial fibrillation accompanied with heart failure: Renal denervation. International Journal of Cardiology, 2017, 243, 281.	1.7	0
11	Improved Biocompatibility of Novel Biodegradable Scaffold Composed of Poly-L-lactic Acid and Amorphous Calcium Phosphate Nanoparticles in Porcine Coronary Artery. Journal of Nanomaterials, 2016, 2016, 1-8.	2.7	11
12	12-Month Coronary Angiography, Intravascular Ultrasound and Histology Evaluation of a Novel Fully Bioabsorbable Poly-L-Lactic Acid/Amorphous Calcium Phosphate Scaffolds in Porcine Coronary Arteries. Journal of Biomedical Nanotechnology, 2016, 12, 743-752.	1.1	8
13	TCT-833 Late Lumen Gain with Bioresorbable Vascular Scaffold in the Porcine Model of Spontaneous Untreated Atherosclerosis: a 3-year IVUS and OCT Study. Journal of the American College of Cardiology, 2016, 68, B337.	2.8	0
14	GW27-e0348 Long Term Comparison between Novel Fully Bioresorbable Scaffolds and Drug-Eluting Stents: A Twenty-Four-Month Study in Porcine Coronary Arteries. Journal of the American College of Cardiology, 2016, 68, C57-C58.	2.8	1
15	TCT-531 Safety of upsizing up to 0.8Âmm beyond nominal compliance chart diameters of a novel sirolimus eluting bioresorbable scaffold in porcine coronary artery model. Journal of the American College of Cardiology, 2015, 66, B217.	2.8	0
16	6-Month Follow-Up of a Novel Biodegradable Drug-Eluting Stent Composed of Poly-L-Lactic Acid and Amorphous Calcium Phosphate Nanoparticles in Porcine Coronary Artery. Journal of Biomedical Nanotechnology, 2015, 11, 1819-1825.	1.1	9
17	Hepatocyte growth factor regulates the TGF-β1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. International Journal of Molecular Medicine, 2014, 34, 381-390.	4.0	58
18	Novel Biodegradable Drug-Eluting Stent Composed of Poly-L-Lactic Acid and Amorphous Calcium Phosphate Nanoparticles Demonstrates Improved Structural and Functional Performance for Coronary Artery Disease. Journal of Biomedical Nanotechnology, 2014, 10, 1194-1204.	1.1	17

#	Article	IF	CITATIONS
19	Improved Biocompatibility of Poly(lactic-co-glycolic acid) and Poly-L-Lactic Acid Blended with Nanoparticulate Amorphous Calcium Phosphate in Vascular Stent Applications. Journal of Biomedical Nanotechnology, 2014, 10, 900-910.	1.1	12