Elzbieta Guziewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/554503/publications.pdf

Version: 2024-02-01

207 papers 3,363 citations

30 h-index 50 g-index

209 all docs 209 docs citations

times ranked

209

3235 citing authors

#	Article	lF	CITATIONS
1	Electrical properties of ZnO films implanted with rare earth and their relationship with structural and optical parameters. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115526.	3.5	6
2	Low-Temperature Cathodoluminescence of Nitrogen-Doped ZnO Films Deposited at Low-Temperature by Atomic Layer Deposition. Acta Physica Polonica A, 2022, 141, 135-139.	0.5	2
3	Polarized dependence of soft X-ray absorption near edge structure of ZnO films implanted by Yb. Materials Science in Semiconductor Processing, 2022, 144, 106609.	4.0	1
4	Growth and characterization of Ti-based films obtained from two selected precursors: H2O, TiCl4, Ti(N(CH3)2)4 or Al2(CH3)6 by the ALD method. Materials Science in Semiconductor Processing, 2022, 148, 106792.	4.0	2
5	Extended Defect States in CdTe/ZnTe Photojunction. Acta Physica Polonica A, 2022, 141, 548-553.	0.5	O
6	Hydrogen in Asâ€Grown and Annealed ZnO Films Grown by Atomic Layer Deposition. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000318.	1.8	5
7	Optical Properties of ZnO Deposited by Atomic Layer Deposition on Sapphire: A Comparison of Thin and Thick Films. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000669.	1.8	8
8	Effect of blocking and tunnel oxide layers on the charge trapping properties of MIS capacitors with ALD HfO2/Al2O3 nanolaminated films. Journal of Physics: Conference Series, 2021, 1762, 012038.	0.4	0
9	Radiation Tolerance and Charge Trapping Enhancement of ALD HfO2/Al2O3 Nanolaminated Dielectrics. Materials, 2021, 14, 849.	2.9	8
10	Schottky contacts to ZnO layers grown by Atomic Layer Deposition: effects of H2O2 functionalization and transport mechanisms. Applied Surface Science, 2021, 552, 149067.	6.1	3
11	Structural Properties of Thin ZnO Films Deposited by ALD under O-Rich and Zn-Rich Growth Conditions and Their Relationship with Electrical Parameters. Materials, 2021, 14, 4048.	2.9	19
12	Fano resonance photoemission study of Sm on Pb0.97Ge0.03Te crystal. Radiation Physics and Chemistry, 2020, 175, 108080.	2.8	1
13	Zinc Oxide Grown by Atomic Layer Deposition: From Heavily nâ€Type to pâ€Type Material. Physica Status Solidi (B): Basic Research, 2020, 257, 1900472.	1.5	21
14	Correlations between the structural transformations and concentration quenching effect for RE-implanted ZnO systems. Applied Surface Science, 2020, 521, 146421.	6.1	10
15	Optical Response of Epitaxial ZnO Films Grown by Atomic Layer Deposition and Coimplanted with Dy and Yb. Physica Status Solidi (B): Basic Research, 2020, 257, 1900513.	1.5	4
16	Influence of oxygen-rich and zinc-rich conditions on donor and acceptor states and conductivity mechanism of ZnO films grown by ALD—Experimental studies. Journal of Applied Physics, 2020, 127, .	2.5	22
17	Leakage currents in Al2O3/HfO2 multilayer high-k stacks and their modification by post-deposition annealing steps. Journal of Physics: Conference Series, 2019, 1186, 012025.	0.4	1
18	Zinc Oxide Grown by ALD - from Heavily \$n\$-type to \$p\$-type Material. , 2019, , .		0

#	Article	IF	Citations
19	Valence band of ZnO:Yb probed by resonant photoemission spectroscopy. Materials Science in Semiconductor Processing, 2019, 91, 306-309.	4.0	4
20	Ion Beam Modification of ZnO Epilayers: Sequential Processing. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700887.	1.8	7
21	Al ₂ O ₃ /HfO ₂ Multilayer Highâ€k Dielectric Stacks for Charge Trapping Flash Memories. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700854.	1.8	27
22	Photoluminescence investigation of the carrier recombination processes in N-doped and undoped ZnO ALD films grown at low temperature. Journal of Luminescence, 2018, 198, 68-76.	3.1	13
23	Luminescence in the Visible Region from Annealed Thin ALDâ€ZnO Films Implanted with Different Rare Earth Ions. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700889.	1.8	11
24	Hole and electron trapping in HfO ₂ /Al ₂ O ₃ nanolaminated stacks for emerging non-volatile flash memories. Nanotechnology, 2018, 29, 505206.	2.6	18
25	Advanced Oxide Materials â^' Growth, Application, Characterization. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800546.	1.8	O
26	Resonant Photoemission Spectroscopy Study on the Contribution of the Yb 4f States to the Electronic Structure of ZnO. Acta Physica Polonica A, 2018, 133, 907-909.	0.5	9
27	Quasi Fermi Level Scan of Band Gap Energy in Photojunction. Acta Physica Polonica A, 2018, 134, 590-595.	0.5	O
28	The photoluminescence response to structural changes of Yb implanted ZnO crystals subjected to non-equilibrium processing. Journal of Applied Physics, 2017, 121, .	2.5	23
29	Diversity of contributions leading to the nominally n–type behavior of ZnO films obtained by low temperature Atomic Layer Deposition. Journal of Alloys and Compounds, 2017, 727, 902-911.	5.5	19
30	Abundant Acceptor Emission from Nitrogen-Doped ZnO Films Prepared by Atomic Layer Deposition under Oxygen-Rich Conditions. ACS Applied Materials & Interfaces, 2017, 9, 26143-26150.	8.0	32
31	Atomic layer deposited ZnO films implanted with Yb: The influence of Yb location on optical and electrical properties. Thin Solid Films, 2017, 643, 7-15.	1.8	16
32	Structural and optical studies of Pr implanted ZnO films subjected to a long-time or ultra-fast thermal annealing. Thin Solid Films, 2017, 643, 24-30.	1.8	11
33	Tuning the properties of ALD-ZnO-based rectifying structures by thin dielectric film insertion – Modeling and experimental studies. Journal of Alloys and Compounds, 2017, 693, 1164-1173.	5.5	4
34	Characterization of ZnO nanolayers by complex impedance spectroscopy., 2017,,.		0
35	Electrical and charge trapping properties of HfO <inf>3</inf> multilayer dielectric stacks. , 2017, , .		0
36	N and Al co-doping as a way to p-type ZnO without post-growth annealing. Materials Research Express, 2016, 3, 125907.	1.6	9

#	Article	IF	Citations
37	Electrical characteristics of multilayered HfO ₂ -Al ₂ O ₃ charge trapping stacks deposited by ALD. Journal of Physics: Conference Series, 2016, 764, 012016.	0.4	11
38	Highly efficient SERS-based detection of cerebrospinal fluid neopterin as a diagnostic marker of bacterial infection. Analytical and Bioanalytical Chemistry, 2016, 408, 4319-4327.	3.7	28
39	Stopping and straggling of H and He in ZnO. European Physical Journal D, 2016, 70, 1.	1.3	10
40	The chemical states of As 3d in highly doped ZnO grown by Molecular Beam Epitaxy and annealed in different atmospheres. Thin Solid Films, 2016, 605, 283-288.	1.8	9
41	XRD and RBS studies of quasi-amorphous zinc oxide layers produced by Atomic Layer Deposition. Thin Solid Films, 2016, 612, 337-341.	1.8	4
42	Atomic layer deposition of ZnO:Al on PAA substrates. Journal of Physics: Conference Series, 2016, 764, 012004.	0.4	4
43	Soft x-ray absorption spectroscopy on Co doped ZnO: structural distortions and electronic structure. Journal of Physics: Conference Series, 2016, 712, 012104.	0.4	5
44	ZnO oxide films for ultrasensitive, rapid, and label-free detection of neopterin by surface-enhanced Raman spectroscopy. Analyst, The, 2015, 140, 5090-5098.	3.5	12
45	Role of the Hafnium Dioxide Spacer in the ZnO-Based Planar Schottky Diodes Obtained by the Low-Temperature Atomic Layer Deposition Method: Investigations of Current-Voltage Characteristics. IEEE Transactions on Electron Devices, 2015, 62, 630-633.	3.0	5
46	The <i>p</i> -ZnO:N/ <i>i</i> -Al ₂ O ₃ / <i>n</i> -GaN heterostructureâ€"electron beam induced profiling, electrical properties and UV detectivity. Journal Physics D: Applied Physics, 2015, 48, 325105.	2.8	9
47	Analysis of scattering mechanisms in zinc oxide films grown by the atomic layer deposition technique. Journal of Applied Physics, 2015, 118, 035706.	2.5	10
48	n-ZnO/p-4H-SiC diode: Structural, electrical, and photoresponse characteristics. Applied Physics Letters, 2015, 107, .	3.3	13
49	Nitrogen doped <i>p</i> type ZnO films and <ip-n< i=""> homojunction. Semiconductor Science and Technology, 2015, 30, 015001.</ip-n<>	2.0	27
50	Response of ZnO/GaN Heterostructure to Ion Irradiation. Acta Physica Polonica A, 2015, 128, 832-835.	0.5	0
51	PA-MBE Grown p-n (p-ZnO:(As+Sb)/ <i>n</i> -GaN) and p-i-n (p-ZnO:As/HfO ₂ /n-GaN) Heterojunctions as a Highly Selective UV Detectors. Key Engineering Materials, 2014, 605, 310-313.	0.4	2
52	Electrical and structural characterization of nitrogen doped ZnO layers grown at low temperature by atomic layer deposition. Semiconductor Science and Technology, 2014, 29, 085006.	2.0	4
53	Atomic layer deposition of $Zn1\hat{a}^{\circ}x$ Mg x O:Al transparent conducting films. Journal of Materials Science, 2014, 49, 1512-1518.	3.7	12
54	Dominant shallow donors in zinc oxide layers obtained by low-temperature atomic layer deposition: Electrical and optical investigations. Acta Materialia, 2014, 65, 69-75.	7.9	20

#	Article	IF	Citations
55	XPS study of arsenic doped ZnO grown by Atomic Layer Deposition. Journal of Alloys and Compounds, 2014, 582, 594-597.	5.5	25
56	Gd and Sm on clean semiconductor surfacesâ€"Resonant photoemission studies. Applied Surface Science, 2013, 282, 326-334.	6.1	6
57	Homogeneous and heterogeneous magnetism in (Zn,Co)O: From a random antiferromagnet to a dipolar superferromagnet by changing the growth temperature. Physical Review B, 2013, 88, .	3.2	43
58	RBS/Channeling Analysis of Zinc Oxide Films Grown at Low Temperature by Atomic Layer Deposition. Acta Physica Polonica A, 2013, 123, 899-903.	0.5	4
59	Characterization of n-ZnO/p-GaN Heterojunction for Optoelectronic Applications. Acta Physica Polonica A, 2013, 124, 869-872.	0.5	5
60	Nonlocal resistance and its fluctuations in microstructures of band-inverted $HgTe/(Hg,Cd)Te$ quantum wells. Physical Review B, 2013, 88, .	3.2	45
61	Trap levels in the atomic layer deposition-ZnO/GaN heterojunctionâ€"Thermal admittance spectroscopy studies. Journal of Applied Physics, 2013, 113, .	2.5	9
62	Thin Films of Highâ€ <i>k</i> Oxides and ZnO for Transparent Electronic Devices. Chemical Vapor Deposition, 2013, 19, 213-220.	1.3	18
63	Homogenous and heterogeneous magnetism in (Zn,Co)O., 2012,,.		1
64	Electrophysical diagnostics of Ag/HfO <inf>2</inf> /ZnO/TiAu structures., 2012,,.		0
65	ZnTe nanowires overgrown by atomic layer deposited (Zn,Co) oxides: Raman scattering studies. , 2012, ,		0
66	2-D Finite-Element Modeling of ZnO Schottky Diodes With Large Ideality Factors. IEEE Transactions on Electron Devices, 2012, 59, 2762-2766.	3.0	6
67	ZnMgO:Al Anode layer for organic light emitting diode based on carbazole derivative. , 2012, , .		0
68	Application of deposited by ALD HfO2 and Al2O3 layers in double-gate dielectric stacks for non-volatile semiconductor memory (NVSM) devices. Applied Surface Science, 2012, 258, 8366-8370.	6.1	15
69	Optical and magnetic properties of ZnCoO layers. Optical Materials, 2012, 34, 2045-2049.	3.6	4
70	ZnO, ZnMnO and ZnCoO films grown by atomic layer deposition. Semiconductor Science and Technology, 2012, 27, 074009.	2.0	22
71	ALD grown zinc oxide with controllable electrical properties. Semiconductor Science and Technology, 2012, 27, 074011.	2.0	134
72	ZnO films grown by atomic layer deposition for organic electronics. Semiconductor Science and Technology, 2012, 27, 074006.	2.0	41

#	Article	IF	CITATIONS
73	Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films, 2012, 520, 4694-4697.	1.8	46
74	X-ray Absorption Fine Structure Investigation of the Low Temperature Grown ZnCoO Films. Acta Physica Polonica A, 2012, 121, 883-887.	0.5	3
75	Electrostatic Gates for GaN/AlGaN Quantum Point Contacts. Acta Physica Polonica A, 2012, 122, 1026-1028.	0.5	0
76	Structure Dependent Conductivity of Ultrathin ZnO Films. Acta Physica Polonica A, 2012, 122, 1042-1044.	0.5	0
77	Zinc oxide for electronic, photovoltaic and optoelectronic applications. Low Temperature Physics, 2011, 37, 235-240.	0.6	73
78	Electronic structure of single crystal UPd3, UGe2, and USb2 from hard X-ray and angle-resolved photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 517-524.	1.7	13
79	Aluminum-doped zinc oxide films grown by atomic layer deposition for transparent electrode applications. Journal of Materials Science: Materials in Electronics, 2011, 22, 1810-1815.	2.2	98
80	Synchrotron photoemission study of (Zn,Co)O films with uniform Co distribution. Radiation Physics and Chemistry, 2011, 80, 1046-1050.	2.8	1
81	Role of interface in ferromagnetism of (Zn,Co)O films. Physica Status Solidi (B): Basic Research, 2011, 248, 1596-1600.	1.5	12
82	Selected optical properties of core/shell ZnMnTe/ZnO nanowire structures. Physica Status Solidi (B): Basic Research, 2011, 248, 1592-1595.	1.5	10
83	The uniformity of Al distribution in aluminum-doped zinc oxide films grown by atomic layer deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 237-241.	3 . 5	38
84	Hafnium dioxide as a passivating layer and diffusive barrier in ZnO/Ag Schottky junctions obtained by atomic layer deposition. Applied Physics Letters, $2011, 98, .$	3.3	26
85	Contactless electroreflectance of ZnO layers grown by atomic layer deposition at low temperature. Semiconductor Science and Technology, 2011, 26, 075012.	2.0	8
86	Electrical parameters of ZnO films and ZnO-based junctions obtained by atomic layer deposition. Semiconductor Science and Technology, 2011, 26, 085013.	2.0	14
87	Thin Film ZnO as Sublayer for Electric Contact for Bulk GaN with Low Electron Concentration. Acta Physica Polonica A, 2011, 119, 672-674.	0.5	7
88	Cathodoluminescence Profiling for Checking Uniformity of ZnO and ZnCoO Thin Films. Acta Physica Polonica A, 2011, 119, 675-677.	0.5	3
89	ZnO Nanopowders by a Microwave Hydrothermal Method - Influence of the Precursor Type on Grain Sizes. Acta Physica Polonica A, 2011, 119, 683-685.	0.5	4
90	Properties and Characterization of ALD Grown Dielectric Oxides for MIS Structures. Acta Physica Polonica A, 2011, 119, 692-695.	0.5	25

#	Article	IF	CITATIONS
91	Schottky Junctions Based on the ALD-ZnO Thin Films for Electronic Applications. Acta Physica Polonica A, 2011, 120, A-17-A-21.	0.5	8
92	Cathodoluminescence Measurements at Liquid Helium Temperature of Poly- and Monocrystalline ZnO Films. Acta Physica Polonica A, 2011, 120, A-28-A-30.	0.5	2
93	Epitaxial ZnO Films Grown at Low Temperature for Novel Electronic Application. Acta Physica Polonica A, 2011, 120, A-7-A-10.	0.5	8
94	Microwave Techniques Investigations of ZnCoO Films Grown by Atomic Layer Deposition. Acta Physica Polonica A, 2011, 120, 911-913.	0.5	0
95	Optical and Structural Characterization of Zinc Oxide Nanostructures Obtained by Atomic Layer Deposition Method. Acta Physica Polonica A, 2011, 120, 905-907.	0.5	1
96	(Zn,Cu)O Films by Atomic Layer Deposition - Structural, Optical and Electric Properties. Acta Physica Polonica A, 2011, 120, A-34-A-36.	0.5	0
97	Synchrotron Photoemission Study of Ferromagnetic (Zn,Co)O Films. Acta Physica Polonica A, 2011, 120, A-40-A-42.	0.5	0
98	SEM, EDS and CL Investigations of ZnMnO and ZnCoO Layers Grown at Low Temperature by Atomic Layer Deposition. Microscopy and Microanalysis, 2010, 16, 810-811.	0.4	7
99	Photovoltaic cells based on nickel phthalocyanine and zinc oxide formed by atomic layer deposition. Central European Journal of Physics, 2010, 8, 798-803.	0.3	25
100	Long time stability of ITO/NiPc/ZnO/Al devices with ZnO buffer layer formed by atomic layer deposition technique–impedance spectroscopy analysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 172, 272-275.	3.5	9
101	Puzzling magneto-optical properties of ZnMnO films. Optical Materials, 2010, 32, 680-684.	3.6	12
102	Monocrystalline zinc oxide films grown by atomic layer deposition. Thin Solid Films, 2010, 518, 4556-4559.	1.8	35
103	Transparent and conductive undoped zinc oxide thin films grown by atomic layer deposition. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1568-1571.	1.8	56
104	Electrical and optical properties of zinc oxide layers grown by the low-temperature atomic layer deposition technique. Physica Status Solidi (B): Basic Research, 2010, 247, 1653-1657.	1.5	4
105	Comparison of dimethylzinc and diethylzinc as precursors for monocrystalline zinc oxide grown by atomic layer deposition method. Physica Status Solidi (B): Basic Research, 2010, 247, 1699-1701.	1.5	13
106	Effects related to deposition temperature of ZnCoO films grown by atomic layer deposition - uniformity of Co distribution, structural, optical, electrical and magnetic properties. Physica Status Solidi (B): Basic Research, 2010, 247, 1666-1670.	1.5	14
107	Zinc oxide grown by atomic layer deposition - a material for novel 3D electronics. Physica Status Solidi (B): Basic Research, 2010, 247, 1611-1615.	1.5	17
108	Growth conditions and structural properties as limiting factors of electrical parameters of ZnO thin films grown by Atomic Layer Deposition with diethylzinc and water precursors. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1550-1552.	0.8	3

#	Article	IF	Citations
109	The properties of tris (8-hydroxyquinoline) aluminum organic light emitting diode with undoped zinc oxide anode layer. Journal of Applied Physics, 2010, 108, 064518.	2.5	25
110	ZnTeâ€"ZnO coreâ€"shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition. Nanotechnology, 2010, 21, 015302.	2.6	28
111	ZnO nanostructures by atomic layer deposition method. Journal of Physics: Conference Series, 2009, 146, 012017.	0.4	7
112	ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions. Journal of Applied Physics, 2009, 105, .	2.5	114
113	Unusual quasiparticle renormalizations from angle resolved photoemission on USb ₂ . Philosophical Magazine, 2009, 89, 1893-1911.	1.6	9
114	Optical properties of manganese doped wide band gap ZnS and ZnO. Optical Materials, 2009, 31, 1768-1771.	3.6	30
115	ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide. Thin Solid Films, 2009, 518, 1145-1148.	1.8	88
116	The influence of growth temperature and precursors' doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectronics Journal, 2009, 40, 293-295.	2.0	50
117	Structural and optical properties of low-temperature ZnO films grown by atomic layer deposition with diethylzinc and water precursors. Journal of Crystal Growth, 2009, 311, 1096-1101.	1.5	54
118	Microscopic (AFM) and resonant photoemission study of Gd/Si(111) interface. Radiation Physics and Chemistry, 2009, 78, S22-S24.	2.8	2
119	Poly(3-hexylthiophene)/ZnO hybrid pn junctions for microelectronics applications. Applied Physics Letters, 2009, 94, .	3.3	71
120	Photoluminescence, electrical and structural properties of ZnO films, grown by ALD at low temperature. Semiconductor Science and Technology, 2009, 24, 105014.	2.0	43
121	ZnO by ALD - Advantages of the Material Grown at Low Temperature. Acta Physica Polonica A, 2009, 116, 814-817.	0.5	19
122	Optical Properties of ZnCoO Films and Nanopowders. Acta Physica Polonica A, 2009, 116, 918-920.	0.5	5
123	ZnCoO Films by Atomic Layer Deposition - Influence of a Growth Temperature οn Uniformity of Cobalt Distribution. Acta Physica Polonica A, 2009, 116, 921-923.	0.5	6
124	Barriers in Miniaturization of Electronic Devices and the Ways to Overcome Them - from a Planar to 3D Device Architecture. Acta Physica Polonica A, 2009, 116, S-19-S-21.	0.5	6
125	Dispersion in the Mott insulator UO ₂ : A comparison of photoemission spectroscopy and screened hybrid density functional theory. Journal of Computational Chemistry, 2008, 29, 2288-2294.	3.3	65
126	New selector based on zinc oxide grown by low temperature atomic layer deposition for vertically stacked non-volatile memory devices. Microelectronic Engineering, 2008, 85, 2442-2444.	2.4	45

#	Article	IF	Citations
127	Vertically stacked non-volatile memory devices – material considerations. Microelectronic Engineering, 2008, 85, 2434-2438.	2.4	37
128	Controlling of preferential growth mode of ZnO thin films grown by atomic layer deposition. Journal of Crystal Growth, 2008, 310, 284-289.	1.5	78
129	Extremely low temperature growth of ZnO by atomic layer deposition. Journal of Applied Physics, 2008, 103, .	2.5	223
130	Observation of a kink in the dispersion of f-electrons. Europhysics Letters, 2008, 84, 37003.	2.0	21
131	Enhanced energy pumping to Tb3+ ions in manganese-doped ZnS nanoparticles. Journal of Alloys and Compounds, 2008, 451, 206-208.	5 . 5	8
132	Electrical behavior of zinc oxide layers grown by low temperature atomic layer deposition. Applied Physics Letters, 2008, 92, .	3.3	108
133	Hybrid Organic/ZnO p-n Junctions with n-Type ZnO Grown by Atomic Layer Deposition. Acta Physica Polonica A, 2008, 114, 1229-1234.	0.5	17
134	ZnCoO Films Obtained at Low Temperature by Atomic Layer Deposition Using Organic Zinc and Cobalt Precursors. Acta Physica Polonica A, 2008, 114, 1235-1240.	0.5	6
135	Characterization of ZnO Films Grown at Low Temperature. Acta Physica Polonica A, 2008, 114, 1303-1310.	0.5	15
136	Extra-Low Temperature Growth of ZnO Thin Films by Atomic Layer Deposition. Journal of the Korean Physical Society, 2008, 53, 2880-2883.	0.7	4
137	Low temperature growth of ZnMnO: A way to avoid inclusions of foreign phases and spinodal decomposition. Applied Physics Letters, 2007, 90, 082502.	3.3	33
138	Color tuning of white light emission from thin films of ZnSe. Journal of Luminescence, 2007, 125, 85-91.	3.1	16
139	Do We Understand Magnetic Properties of ZnMnO?. Acta Physica Polonica A, 2007, 112, 261-267.	0.5	7
140	Extra-Low Temperature Growth of ZnO by Atomic Layer Deposition with Diethylzinc Precursor. Acta Physica Polonica A, 2007, 112, 401-406.	0.5	25
141	Dual nature of the 5f electrons in plutonium materials. Physica B: Condensed Matter, 2006, 378-380, 920-924.	2.7	20
142	Electronic structure and magnetism in actinide compounds. Physica B: Condensed Matter, 2006, 378-380, 1033-1034.	2.7	2
143	Electronic structure of layered uranium compounds from photoemission spectroscopy. Surface Science, 2006, 600, 1632-1636.	1.9	9
144	A comparison of hybrid density functional theory with photoemission of surface oxides of \hat{l} -plutonium. Surface Science, 2006, 600, 1637-1640.	1.9	17

#	Article	IF	CITATIONS
145	Localized and Itinerant States in Actinide Materials. Materials Research Society Symposia Proceedings, 2006, $986,1.$	0.1	O
146	Angle-resolved photoemission study of dispersive and narrow-band5fstates in UAsSe. Physical Review B, 2006, 73, .	3.2	6
147	Magnetic properties of ZnMnO films grown at low temperature by atomic layer deposition. Applied Physics Letters, 2006, 89, 051907.	3.3	38
148	Tuning of Color Chromaticity of Light Emission from ZnSe Films Grown on a GaAs Substrate by Atomic Layer Epitaxy. Acta Physica Polonica A, 2006, 110, 359-367.	0.5	0
149	Mn on the Surface of ZnO0001 a Resonant Photoemisson Study. Physica Scripta, 2005, , 541.	2.5	5
150	Growth by atomic layer epitaxy and characterization of thin films of ZnO. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1125-1130.	0.8	20
151	Electronic Structure of PuCoGa5 and UCoGa5. Materials Research Society Symposia Proceedings, 2005, 893, 1.	0.1	0
152	Localized and Itinerant States in Pu Materials. Materials Research Society Symposia Proceedings, 2005, 893, 1.	0.1	1
153	Zn(Mn)O Surface Alloy Studied by Synchrotron Radiation Photoemission. Acta Physica Polonica A, 2005, 108, 689-696.	0.5	2
154	Magnetic, Structural, and Optical Properties of Low Temperature ZnMnO Grown by Atomic Layer Epitaxy. Acta Physica Polonica A, 2005, 108, 915-921.	0.5	6
155	Electronic structure of actinide antimonides and tellurides from photoelectron spectroscopy. Physical Review B, 2004, 70, .	3.2	55
156	Angle-resolved photoemission study ofUSb2: The5fband structure. Physical Review B, 2004, 69, .	3.2	39
157	Direct Observation of Itinerant Magnetism in the5f-Electron System UTe. Physical Review Letters, 2004, 93, 267205.	7.8	29
158	Monocrystalline thin films of ZnSe and ZnO grown by atomic layer epitaxy. Vacuum, 2004, 74, 269-272.	3.5	11
159	Atomic layer deposition of thin films of ZnSeâ€"structural and optical characterization. Thin Solid Films, 2004, 446, 172-177.	1.8	42
160	Interaction between Sm and GaN––a photoemission study. Surface Science, 2004, 551, 132-142.	1.9	9
161	Photoemission of surface oxides and hydrides of delta plutonium. Surface Science, 2004, 571, 74-82.	1.9	76
162	Photoemission study of EuS/PbS electronic structure. Journal of Alloys and Compounds, 2004, 362, 198-201.	5 . 5	7

#	Article	lF	CITATIONS
163	Zinc selenide and zinc telluride. Series in Optics and Optoelectronics, 2004, , .	0.0	O
164	Origin of white color light emission in ALE-grown ZnSe. Journal of Luminescence, 2003, 102-103, 455-459.	3.1	36
165	Photoemission and the Electronic Structure of PuCoGa5. Physical Review Letters, 2003, 91, 176401.	7.8	94
166	Electronic structure of UAsSe and USb2 compounds: the 5f photoemission. Materials Research Society Symposia Proceedings, 2003, 802, 170.	0.1	1
167	Electronic structure of Zn(Mn)O surface alloy - a resonant photoemission study. Materials Research Society Symposia Proceedings, 2003, 786, 641.	0.1	0
168	Electronic Structure and Surface Science of delta Plutonium. Materials Research Society Symposia Proceedings, 2003, 802, 75.	0.1	0
169	VUV and Soft X-ray Spectroscopy of Actinides. Materials Research Society Symposia Proceedings, 2003, 802, 55.	0.1	0
170	Electronic Structure of δ-Pu and PuCoGa5 from Photoemission and the Mixed Level Model. Materials Research Society Symposia Proceedings, 2003, 802, 221.	0.1	0
171	USb2 and PuSb2 Electronic Structure: A Photoemission Study. AIP Conference Proceedings, 2003, , .	0.4	0
172	The Localized and Itinerant Nature of 5f Electrons in Pu and Pu Compounds. AIP Conference Proceedings, 2003, , .	0.4	0
173	Magnetism and Localization in 5f Monopnictides and Monochalcogenides Using PES. AIP Conference Proceedings, 2003, , .	0.4	0
174	Photoemission and Electronic Structure of UCoGa5 and PuCoGa5. AIP Conference Proceedings, 2003, , .	0.4	0
175	Photoemission study of Gd on clean Si() surface. Surface Science, 2002, 507-510, 218-222.	1.9	7
176	Influence of Structural Properties and of Growth Conditions on Exciton Properties in ZnCdSe/ZnSe Quantum Well Structures. Materials Science Forum, 2002, 384-385, 63-66.	0.3	0
177	Photoemission study of samarium on and CdTe(100). Applied Surface Science, 2002, 190, 356-360.	6.1	3
178	Transition metal 3d states in HgSe-based diluted magnetic semiconductors. Journal of Alloys and Compounds, 2001, 328, 119-125.	5.5	1
179	Photoemission study of Sm/CdTe interface formation. Surface Science, 2001, 482-485, 512-518.	1.9	5
180	Clean and doped surface electronic structure in angle-resolved and resonant photoemission study. Progress in Surface Science, 2001, 67, 323-338.	8.3	8

#	Article	IF	CITATIONS
181	Optical and Structural Properties of Thin Films of ZnS Grown by Atomic Layer Epitaxy. Journal of Wide Bandgap Materials, 2001, 9, 55-63.	0.1	4
182	Differential Reflectivity and Angle Resolved Photoemission of PbS (100)., 2001,,.		0
183	Electronic structure of MBE grown CdYbTe: photoemission studies. Thin Solid Films, 2000, 367, 193-198.	1.8	1
184	Photoemission study of Gd atoms on CdTe(100) surface. Applied Surface Science, 2000, 166, 231-236.	6.1	7
185	Optical and photoemission study of surface electronic states and surface oxidation on CdTe(110). Applied Surface Science, 1999, 142, 33-37.	6.1	4
186	Rare earth 4f states in AIV1â^'xRExBVI diluted magnetic semiconductors. Journal of Alloys and Compounds, 1999, 286, 121-127.	5 . 5	10
187	The influence of the Fe 3d states on the electronic band structure of CdTe/Fe and bulk Cd0.985Fe0.015Te crystal. Journal of Alloys and Compounds, 1999, 286, 137-142.	5 . 5	6
188	Resonant photoemission study of rare earth 4f states inSn1â^'xGdxTe. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 327-331.	1.7	5
189	From CdTe/Fe schottky barrier to Cd1â°'xFexTe semimagnetic semiconductor. Applied Surface Science, 1998, 123-124, 631-635.	6.1	3
190	Fe 3p-3d Fano resonances inCdTe(111)/Fe andCd1â^'XFeXTe. Journal of Electron Spectroscopy and Related Phenomena, 1998, 88-91, 321-326.	1.7	1
191	Contribution of Mn 3d Electrons To the Valence Band of Sn0.9Mn0.1te. Acta Physica Polonica A, 1998, 94, 454-458.	0.5	2
192	Valence Band Density of States and Mn 3d Contribution in Mn _{1-x} Mg _x Te. Acta Physica Polonica A, 1998, 94, 401-405.	0.5	0
193	Optical transitions in cubicHgSe1â^'ySyscrystals. Physical Review B, 1997, 55, 4405-4410.	3.2	4
194	Resonant Photoemission Study of Gd 4f States in IV-VI Crystals. Acta Physica Polonica A, 1997, 91, 819-823.	0.5	1
195	4f Shell of Gd2+and Gd3+lons in Sn1-xGdxTe - Resonant Photoemission Study. Acta Physica Polonica A, 1997, 92, 875-878.	0.5	3
196	Cr 3d Surface and Bulk States in Sn1-xCrxTe/Cr Crystals. Acta Physica Polonica A, 1997, 91, 783-787.	0.5	0
197	Cd1-xFexTe Ternary Crystal Formation Studied by Resonant Photoemission. Acta Physica Polonica A, 1997, 92, 793-796.	0.5	0
198	Cd1-xFexSe/Fe Interface Formation Observed by Means of Photoemission Spectroscopy. Acta Physica Polonica A, 1996, 90, 805-808.	0.5	1

#	Article	IF	Citations
199	Influence of Yb on Valence Band Density of States of CdYbTe and PbYbTe - a Resonant Photoemission Study. Acta Physica Polonica A, 1996, 90, 943-946.	0.5	0
200	4f Contribution to Valence Band of Pb _{1-x} RE _x S (RE = Eu,Gd) Studied by Resonant Photoemission. Acta Physica Polonica A, 1996, 90, 1035-1039.	0.5	0
201	Band structure of MBE-grown and photoemission studies. Thin Solid Films, 1995, 267, 69-73.	1.8	6
202	Electronic Band Structure of Cubic HgS. Acta Physica Polonica A, 1995, 87, 395-398.	0.5	3
203	Resonant Photoemission Spectra of Zn _{1-x} Co _x S Valence Band. Acta Physica Polonica A, 1994, 86, 831-836.	0.5	5
204	Reflectivity Study of Hg1-xCoxSe Crystals. Acta Physica Polonica A, 1994, 86, 875-878.	0.5	2
205	Visible Luminescence from Porous Silicon. Acta Physica Polonica A, 1993, 84, 761-764.	0.5	0
206	Fabrication and Characterization of n-ZnO/p-SiC Heterojunction Diode. Materials Science Forum, 0, 717-720, 1323-1326.	0.3	0
207	Carbazole Derivative Based Near Ultraviolet Organic Light Emitting Diode with ZnMgO:Al Anode Layer. Solid State Phenomena, 0, 200, 45-49.	0.3	4