
Andrea L Graham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5544604/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The evolution of powerful yet perilous immune systems. Trends in Immunology, 2022, 43, 117-131.	2.9	11
2	Partial immunity and SARS-CoV-2 mutations—Response. Science, 2021, 372, 354-355.	6.0	2
3	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	6.0	185
4	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	6.0	80
5	Naturalizing mouse models for immunology. Nature Immunology, 2021, 22, 111-117.	7.0	58
6	Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Computational Biology, 2021, 17, e1009714.	1.5	2
7	Why leveraging sex differences in immune tradeâ€offs may illuminate the evolution of senescence. Functional Ecology, 2020, 34, 129-140.	1.7	31
8	Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Computational Biology, 2020, 16, e1008051.	1.5	11
9	Strong effects of lab-to-field environmental transitions on the bacterial intestinal microbiota of Mus musculus are modulated by Trichuris murisinfection. FEMS Microbiology Ecology, 2020, 96, .	1.3	17
10	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370, 811-818.	6.0	210
11	Do parasite infections interfere with immunisation? A review and meta-analysis. Vaccine, 2020, 38, 5582-5590.	1.7	36
12	Noninvasive measurement of mucosal immunity in a freeâ€ranging baboon population. American Journal of Primatology, 2020, 82, e23093.	0.8	7
13	Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization. Cell Host and Microbe, 2020, 27, 809-822.e6.	5.1	119
14	Rewilding Nod2 and Atg16l1 Mutant Mice Uncovers Genetic and Environmental Contributions to Microbial Responses and Immune Cell Composition. Cell Host and Microbe, 2020, 27, 830-840.e4.	5.1	62
15	Experimental parasite community perturbation reveals associations between Sin Nombre virus and gastrointestinal nematodes in a rodent reservoir host. Biology Letters, 2020, 16, 20200604.	1.0	14
16	Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathogens, 2020, 16, e1009105.	2.1	14
17	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	2.8	91

18 Title is missing!. , 2020, 16, e1008051.

ANDREA L GRAHAM

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 16, e1008051.		Ο
20	Title is missing!. , 2020, 16, e1008051.		0
21	Title is missing!. , 2020, 16, e1008051.		Ο
22	Parasite resource manipulation drives bimodal variation in infection duration. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190456.	1.2	19
23	Cover Image, Volume 29, Issue 4. Hippocampus, 2019, 29, C1-C1.	0.9	Ο
24	From population to individual host scale and back again: testing theories of infection and defence in the Soay sheep of St Kilda. , 2019, , 91-128.		1
25	The effects of living in an outdoor enclosure on hippocampal plasticity and anxietyâ€like behavior in response to nematode infection. Hippocampus, 2019, 29, 366-377.	0.9	18
26	Competing for blood: the ecology of parasite resource competition in human malaria–helminth coâ€infections. Ecology Letters, 2018, 21, 536-545.	3.0	31
27	Immune Signaling Networks: Sources of Robustness and Constrained Evolvability during Coevolution. Molecular Biology and Evolution, 2018, 35, 676-687.	3.5	12
28	Schedule and magnitude of reproductive investment under immune trade-offs explains sex differences in immunity. Nature Communications, 2018, 9, 4391.	5.8	29
29	Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Frontiers in Microbiology, 2018, 9, 843.	1.5	146
30	Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biology, 2018, 16, e2004108.	2.6	97
31	Inferring infection hazard in wildlife populations by linking data across individual and population scales. Ecology Letters, 2017, 20, 275-292.	3.0	50
32	Joint associations of blood plasma proteins with overwinter survival of a large mammal. Ecology Letters, 2017, 20, 175-183.	3.0	16
33	The withinâ€host dynamics of infection in transâ€generationally primed flour beetles. Molecular Ecology, 2017, 26, 3794-3807.	2.0	70
34	Pathways to zoonotic spillover. Nature Reviews Microbiology, 2017, 15, 502-510.	13.6	702
35	Demographically framing trade-offs between sensitivity and specificity illuminates selection on immunity. Nature Ecology and Evolution, 2017, 1, 1766-1772.	3.4	24
36	Instructed subsets or agile swarms: how T-helper cells may adaptively counter uncertainty with variability and plasticity. Current Opinion in Genetics and Development, 2017, 47, 75-82.	1.5	7

ANDREA L GRAHAM

#	Article	IF	CITATIONS
37	Dissecting the contributions of time and microbe density to variation in immune gene expression. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170727.	1.2	24
38	Physiological proteins in resource-limited herbivores experiencing a population die-off. Die Naturwissenschaften, 2017, 104, 68.	0.6	2
39	Robust extraction of quantitative structural information from high-variance histological images of livers from necropsied Soay sheep. Royal Society Open Science, 2017, 4, 170111.	1.1	2
40	Relative contributions of environmental and maternal factors to transâ€generational immune priming in T . castaneum. Ecological Entomology, 2017, 42, 100-104.	1.1	4
41	Are we immune by chance?. ELife, 2017, 6, .	2.8	7
42	Feeding Immunity: Physiological and Behavioral Responses to Infection and Resource Limitation. Frontiers in Immunology, 2017, 8, 1914.	2.2	29
43	The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial. Trials, 2016, 17, 279.	0.7	2
44	Exposure to viral and bacterial pathogens among Soay sheep (<i>Ovis aries</i>) of the St Kilda archipelago. Epidemiology and Infection, 2016, 144, 1879-1888.	1.0	7
45	<i>Trypanosoma cruzi–Trypanosoma rangeli</i> co-infection ameliorates negative effects of single trypanosome infections in experimentally infected <i>Rhodnius prolixus</i> . Parasitology, 2016, 143, 1157-1167.	0.7	21
46	Integrating immune mechanisms to model nematode worm burden: an example in sheep. Parasitology, 2016, 143, 894-904.	0.7	5
47	Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet, The, 2016, 388, 728-730.	6.3	213
48	Opportunities and challenges of <scp>I</scp> ntegral <scp>P</scp> rojection <scp>M</scp> odels for modelling host–parasite dynamics. Journal of Animal Ecology, 2016, 85, 343-355.	1.3	26
49	What is the â€~true' effect of Trypanosoma rangeli on its triatomine bug vector?. Journal of Vector Ecology, 2016, 41, 27-33.	0.5	10
50	Universal or Specific? A Modeling-Based Comparison of Broad-Spectrum Influenza Vaccines against Conventional, Strain-Matched Vaccines. PLoS Computational Biology, 2016, 12, e1005204.	1.5	27
51	Increased exposure to <i>Plasmodium chabaudi</i> antigens sustains cross-reactivity and avidity of antibodies binding <i>Nippostrongylus brasiliensis</i> : dissecting cross-phylum cross-reactivity in a rodent model. Parasitology, 2015, 142, 1703-1714.	0.7	3
52	Within-host dynamics of infection: from ecological insights to evolutionary predictions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140304.	1.8	11
53	Dynamic Patterns of Parasitism and Immunity across Host Development Influence Optimal Strategies of Resource Allocation. American Naturalist, 2015, 186, 495-512.	1.0	25
54	Bottomâ€up regulation of malaria population dynamics in mice coâ€infected with lungâ€migratory nematodes. Ecology Letters, 2015, 18, 1387-1396.	3.0	24

#	Article	IF	CITATIONS
55	Transâ€generational priming of resistance in wild flour beetles reflects the primed phenotypes of laboratory populations and is inhibited by coâ€infection with a common parasite. Functional Ecology, 2015, 29, 1059-1069.	1.7	50
56	Understanding Herd Immunity. Trends in Immunology, 2015, 36, 753-755.	2.9	102
57	Rhodnius prolixus Life History Outcomes Differ when Infected with Different Trypanosoma cruzi I Strains. American Journal of Tropical Medicine and Hygiene, 2015, 93, 564-572.	0.6	28
58	Evolution: Parasite Pressure Favors Fortress-like Defence. Current Biology, 2015, 25, R335-R337.	1.8	1
59	Evolution of hosts paying manifold costs of defence. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150065.	1.2	41
60	Natural Selection on Individual Variation in Tolerance of Gastrointestinal Nematode Infection. PLoS Biology, 2014, 12, e1001917.	2.6	104
61	Interesting Open Questions in Disease Ecology and Evolution. American Naturalist, 2014, 184, S1-S8.	1.0	74
62	Heritable, Heterogeneous, and Costly Resistance of Sheep against Nematodes and Potential Feedbacks to Epidemiological Dynamics. American Naturalist, 2014, 184, S58-S76.	1.0	60
63	Multivariate immune defences and fitness in the wild: complex but ecologically important associations among plasma antibodies, health and survival. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132931.	1.2	57
64	Cross-Reactive Immune Responses as Primary Drivers of Malaria Chronicity. Infection and Immunity, 2014, 82, 140-151.	1.0	17
65	Insights from Parasite-Specific Serological Tools in Eco-Immunology. Integrative and Comparative Biology, 2014, 54, 363-376.	0.9	21
66	Detecting genes for variation in parasite burden and immunological traits in a wild population: testing the candidate gene approach. Molecular Ecology, 2013, 22, 757-773.	2.0	39
67	Quantifying variation in the potential for antibody-mediated apparent competition among nine genotypes of the rodent malaria parasite Plasmodium chabaudi. Infection, Genetics and Evolution, 2013, 20, 270-275.	1.0	16
68	Patterns and Processes in Parasite Co-Infection. Advances in Parasitology, 2013, 82, 321-369.	1.4	59
69	Using process algebra to develop predator–prey models of within-host parasite dynamics. Journal of Theoretical Biology, 2013, 329, 74-81.	0.8	3
70	Editorial Optimal immunity meets natural variation: the evolutionary biology of host defence. Parasite Immunology, 2013, 35, n/a-n/a.	0.7	15
71	Revealing mechanisms underlying variation in malaria virulence: effective propagation and host control of uninfected red blood cell supply. Journal of the Royal Society Interface, 2012, 9, 2804-2813.	1.5	22
72	Elevated haemocyte number is associated with infection and low fitness potential in wild <i>Daphnia magna</i> . Functional Ecology, 2012, 26, 434-440.	1.7	17

Andrea L Graham

#	Article	IF	CITATIONS
73	Dynamics of a Cytokine Storm. PLoS ONE, 2012, 7, e45027.	1.1	87
74	Fitness consequences of immune responses: strengthening the empirical framework for ecoimmunology. Functional Ecology, 2011, 25, 5-17.	1.7	202
75	Consequences of immunopathology for pathogen virulence evolution and public health: malaria as a case study. Evolutionary Applications, 2011, 4, 278-291.	1.5	31
76	Explaining rapid reinfections in multiple-wave influenza outbreaks: Tristan da Cunha 1971 epidemic as a case study. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3635-3643.	1.2	43
77	Partitioning Regulatory Mechanisms of Within-Host Malaria Dynamics Using the Effective Propagation Number. Science, 2011, 333, 984-988.	6.0	86
78	Antibody isotype analysis of malaria-nematode co-infection: problems and solutions associated with cross-reactivity. BMC Immunology, 2010, 11, 6.	0.9	24
79	The Coevolution of Virulence: Tolerance in Perspective. PLoS Pathogens, 2010, 6, e1001006.	2.1	149
80	Fitness Correlates of Heritable Variation in Antibody Responsiveness in a Wild Mammal. Science, 2010, 330, 662-665.	6.0	182
81	Decomposing health: tolerance and resistance to parasites in animals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 37-49.	1.8	667
82	Plasmodium chabaudi limits early Nippostrongylus brasiliensis-induced pulmonary immune activation and Th2 polarization in co-infected mice. BMC Immunology, 2009, 10, 60.	0.9	25
83	PERSPECTIVE ARTICLE: Why do adaptive immune responses crossâ€react?. Evolutionary Applications, 2009, 2, 122-131.	1.5	21
84	Early recruitment of natural CD4 ⁺ Foxp3 ⁺ Treg cells by infective larvae determines the outcome of filarial infection. European Journal of Immunology, 2009, 39, 192-206.	1.6	114
85	Experimental manipulation of immune-mediated disease and its fitness costs for rodent malaria parasites. BMC Evolutionary Biology, 2008, 8, 128.	3.2	41
86	Blockade of TNF receptor 1 reduces disease severity but increases parasite transmission during Plasmodium chabaudi chabaudi infection. International Journal for Parasitology, 2008, 38, 1073-1081.	1.3	31
87	t Testing the Immune System. Immunity, 2008, 28, 288-292.	6.6	9
88	Ecological rules governing helminth–microparasite coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 566-570.	3.3	324
89	Optimality analysis of Th1/Th2 immune responses during microparasite-macroparasite co-infection, with epidemiological feedbacks. Parasitology, 2008, 135, 841-853.	0.7	39
90	Parasitic co-infections: challenges and solutions. Parasitology, 2008, 135, 749-749.	0.7	8

ANDREA L GRAHAM

#	Article	IF	CITATIONS
91	Animal Defenses against Infectious Agents: Is Damage Control More Important Than Pathogen Control. PLoS Biology, 2008, 6, e1000004.	2.6	187
92	Evolution of parasite virulence when host responses cause disease. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2685-2692.	1.2	84
93	Transmission consequences of coinfection: cytokines writ large?. Trends in Parasitology, 2007, 23, 284-291.	1.5	113
94	Parasite genetic diversity does not influence TNF-mediated effects on the virulence of primary rodent malaria infections. Parasitology, 2006, 133, 673.	0.7	20
95	Quantitative appraisal of murine filariasis confirms host strain differences but reveals that BALB/c females are more susceptible than males to Litomosoides sigmodontis. Microbes and Infection, 2005, 7, 612-618.	1.0	29
96	Co-infected C57BL/6 mice mount appropriately polarized and compartmentalized cytokine responses to Litomosoides sigmodontis and Leishmania major but disease progression is altered. Parasite Immunology, 2005, 27, 317-324.	0.7	29
97	Malariaâ€Filaria Coinfection in Mice Makes Malarial Disease More Severe unless Filarial Infection Achieves Patency. Journal of Infectious Diseases, 2005, 191, 410-421.	1.9	137
98	Evolutionary Causes and Consequences of Immunopathology. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 373-397.	3.8	338
99	EFFECTS OF SNAIL SIZE AND AGE ON THE PREVALENCE AND INTENSITY OF AVIAN SCHISTOSOME INFECTION: RELATING LABORATORY TO FIELD STUDIES. Journal of Parasitology, 2003, 89, 458-463.	0.3	41
100	When Tâ€Helper Cells Don't Help: Immunopathology During Concomitant Infection. Quarterly Review of Biology, 2002, 77, 409-434.	0.0	64
101	IL-4 is required to prevent filarial nematode development in resistant but not susceptible strains of mice. International Journal for Parasitology, 2002, 32, 1277-1284.	1.3	68
102	Use of an optimality model to solve the immunological puzzle of concomitant infection. Parasitology, 2001, 122, S61-S64.	0.7	9