
Alexandra Jahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5544595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taking climate model evaluation to the next level. Nature Climate Change, 2019, 9, 102-110.	18.8	407
2	Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bulletin of the American Meteorological Society, 2016, 97, 735-754.	3.3	382
3	Arctic Sea Ice in CMIP6. Geophysical Research Letters, 2020, 47, e2019GL086749.	4.0	304
4	Influence of internal variability on Arctic sea-ice trends. Nature Climate Change, 2015, 5, 86-89.	18.8	235
5	Coherent high- and low-latitude control of the northwest African hydrological balance. Nature Geoscience, 2008, 1, 670-675.	12.9	233
6	Interâ€annual to multiâ€decadal Arctic sea ice extent trends in a warming world. Geophysical Research Letters, 2011, 38, .	4.0	227
7	Community climate simulations to assess avoided impacts in 1.5 and 2  °C futures. Earth System Dynamics, 2017, 8, 827-847.	7.1	153
8	How predictable is the timing of a summer iceâ€free Arctic?. Geophysical Research Letters, 2016, 43, 9113-9120.	4.0	147
9	Twenty-First-Century Arctic Climate Change in CCSM4. Journal of Climate, 2012, 25, 2696-2710.	3.2	112
10	Late-Twentieth-Century Simulation of Arctic Sea Ice and Ocean Properties in the CCSM4. Journal of Climate, 2012, 25, 1431-1452.	3.2	99
11	Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4â€CMIP5 simulations. Geophysical Research Letters, 2013, 40, 1206-1211.	4.0	86
12	The CMIP6 Sea-Ice Model Intercomparison Project (SIMIP): understanding sea ice through climate-model simulations. Geoscientific Model Development, 2016, 9, 3427-3446.	3.6	83
13	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	2.4	81
14	Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nature Climate Chang 2018, 8, 409-413.	^{3e} 18.8	80
15	Reduced ENSO variability at the LGM revealed by an isotopeâ€enabled Earth system model. Geophysical Research Letters, 2017, 44, 6984-6992.	4.0	71
16	Nonuniform Contribution of Internal Variability to Recent Arctic Sea Ice Loss. Journal of Climate, 2019, 32, 4039-4053.	3.2	69
17	Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances, 2021, 7, .	10.3	66
18	Arctic Ocean freshwater: How robust are model simulations?. Journal of Geophysical Research, 2012, 117, .	3.3	65

Alexandra Jahn

#	Article	IF	CITATIONS
19	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 2016, 99, 110-132.	2.4	64
20	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 2016, 99, 86-109.	2.4	58
21	Amplified North Atlantic warming in the late Pliocene by changes in Arctic gateways. Geophysical Research Letters, 2017, 44, 957-964.	4.0	53
22	Recent Advances in Arctic Ocean Studies Employing Models from the Arctic Ocean Model Intercomparison Project. Oceanography, 2011, 24, 102-113.	1.0	49
23	Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum. Climate of the Past, 2005, 1, 1-7.	3.4	46
24	A tracer study of the Arctic Ocean's liquid freshwater export variability. Journal of Geophysical Research, 2010, 115, .	3.3	41
25	Carbon isotopes in the ocean model of the Community Earth System Model (CESM1). Geoscientific Model Development, 2015, 8, 2419-2434.	3.6	39
26	Arctic Sea Ice in Two Configurations of the CESM2 During the 20th and 21st Centuries. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016133.	2.6	39
27	Effect of the large-scale atmospheric circulation on the variability of the Arctic Ocean freshwater export. Climate Dynamics, 2010, 34, 201-222.	3.8	38
28	True to Milankovitch: Glacial Inception in the New Community Climate System Model. Journal of Climate, 2012, 25, 2226-2239.	3.2	38
29	Asynchronous warming and δ ¹⁸ O evolution of deep Atlantic water masses during the last deglaciation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11075-11080.	7.1	38
30	Can regional climate engineering save the summer Arctic sea ice?. Geophysical Research Letters, 2014, 41, 880-885.	4.0	32
31	Spurious Late Historicalâ€Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions. Geophysical Research Letters, 2022, 49, .	4.0	29
32	Definition differences and internal variability affect the simulated Arctic sea ice melt season. Cryosphere, 2019, 13, 1-20.	3.9	27
33	Arctic open-water periods are projected to lengthen dramatically by 2100. Communications Earth & Environment, 2021, 2, .	6.8	26
34	Forced Changes in the Arctic Freshwater Budget Emerge in the Early 21st Century. Geophysical Research Letters, 2020, 47, e2020GL088854.	4.0	22
35	Assessing the potential capability of reconstructing glacial Atlantic water masses and AMOC using multiple proxies in CESM. Earth and Planetary Science Letters, 2020, 541, 116294.	4.4	22
36	Arctic Ocean Freshwater in CMIP6 Ensembles: Declining Sea Ice, Increasing Ocean Storage and Export. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016930.	2.6	20

Alexandra Jahn

#	Article	IF	CITATIONS
37	Modeling Neodymium Isotopes in the Ocean Component of the Community Earth System Model (CESM1). Journal of Advances in Modeling Earth Systems, 2019, 11, 624-640.	3.8	18
38	Asymmetric Cooling of the Atlantic and Pacific Arctic During the Past Two Millennia: A Dual Observationâ€Modeling Study. Geophysical Research Letters, 2018, 45, 12,497.	4.0	15
39	Seasonal transition dates can reveal biases in Arctic sea ice simulations. Cryosphere, 2020, 14, 2977-2997.	3.9	11
40	Investigating the Direct Meltwater Effect in Terrestrial Oxygenâ€Isotope Paleoclimate Records Using an Isotopeâ€Enabled Earth System Model. Geophysical Research Letters, 2017, 44, 12,501.	4.0	10
41	Episodic Neoglacial expansion and rapid 20thÂcentury retreat of a small ice cap on Baffin Island, Arctic Canada, and modeled temperature change. Climate of the Past, 2017, 13, 1527-1537.	3.4	10
42	Assessing the Ability of Zonal δ ¹⁸ O Contrast in Benthic Foraminifera to Reconstruct Deglacial Evolution of Atlantic Meridional Overturning Circulation. Paleoceanography and Paleoclimatology, 2019, 34, 800-812.	2.9	10
43	Less Surface Sea Ice Melt in the CESM2 Improves Arctic Sea Ice Simulation With Minimal Nonâ€Polar Climate Impacts. Journal of Advances in Modeling Earth Systems, 2022, 14, .	3.8	9
44	Arctic sea ice melt onset favored by an atmospheric pressure pattern reminiscent of the North American-Eurasian Arctic pattern. Climate Dynamics, 2021, 57, 1771-1787.	3.8	8
45	Remineralization dominating the Î13C decrease in the mid-depth Atlantic during the last deglaciation. Earth and Planetary Science Letters, 2021, 571, 117106.	4.4	8
46	Sustained mid-Pliocene warmth led to deep water formation in the North Pacific. Nature Geoscience, 2022, 15, 658-663.	12.9	8
47	Increased Transnational Sea Ice Transport Between Neighboring Arctic States in the 21 st Century. Earth's Future, 2020, 8, e2019EF001284.	6.3	5