Liying Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5543028/publications.pdf

Version: 2024-02-01

		136950	133252
58	8,959	32	59
papers	citations	h-index	g-index
60	60	60	13508
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Electrochemical Construction of Edgeâ€Contacted Metalâ€Semiconductor Junctions with Low Contact Barrier. Advanced Materials, 2022, 34, .	21.0	5
2	Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition. Nano Research, 2021, 14, 1659-1662.	10.4	14
3	Rapid and Large-Scale Quality Assessment of Two-Dimensional MoS ₂ Using Sulfur Particles with Optical Visualization. Nano Letters, 2021, 21, 1260-1266.	9.1	10
4	Activating a Two-Dimensional PtSe ₂ Basal Plane for the Hydrogen Evolution Reaction through the Simultaneous Generation of Atomic Vacancies and Pt Clusters. Nano Letters, 2021, 21, 3857-3863.	9.1	40
5	Chemical Synthesis and Integration ofÂHighly Conductive PdTe ₂ Âwith Lowâ€Dimensional Semiconductors for pâ€Type Transistors with Low Contact Barriers. Advanced Materials, 2021, 33, e2101150.	21.0	16
6	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	43
7	Photocarrier Dynamics in MoTe ₂ Nanofilms with 2 <i>H</i> and Distorted 1 <i>T</i> Lattice Structures. ACS Applied Materials & Structures. ACS ACS Applied Materials & Structures. ACS	8.0	6
8	Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Research, 2021, 14, 2314.	10.4	27
9	Anomalous Linear Layer-Dependent Blue Shift of Ultraviolet-Range Interband Transition in Two-Dimensional MoS ₂ . Journal of Physical Chemistry C, 2020, 124, 1609-1616.	3.1	1
10	1D/2D Heterostructures as Ultrathin Catalysts for Hydrogen Evolution Reaction. Small, 2020, 16, e2004296.	10.0	10
11	Growth of Single-crystalline Transition Metal Dichalcogenides Monolayers with Large-size. Chemical Research in Chinese Universities, 2020, 36, 511-517.	2.6	5
12	Phase Transition Photodetection in Charge Density Wave Tantalum Disulfide. Nano Letters, 2020, 20, 6725-6731.	9.1	10
13	A native oxide high- \hat{l}^{ϱ} gate dielectric for two-dimensional electronics. Nature Electronics, 2020, 3, 473-478.	26.0	141
14	Phase Engineering of <scp>Twoâ€Dimensional</scp> Transition Metal Dichalcogenides. Chinese Journal of Chemistry, 2020, 38, 753-760.	4.9	56
15	Visualization of point defects in ultrathin layered 1T-PtSe ₂ . 2D Materials, 2019, 6, 041005.	4.4	52
16	Highly crystalline ReSe ₂ atomic layers synthesized by chemical vapor transport. InformaÄnÃ- Materiály, 2019, 1, 552-558.	17.3	24
17	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 6977-6981.	13.8	76
18	Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS ₂ /WTe ₂ Hybrid Structures. Small, 2019, 15, e1900078.	10.0	58

#	Article	IF	Citations
19	Simultaneous synthesis and integration of two-dimensional electronic components. Nature Electronics, 2019, 2, 164-170.	26.0	95
20	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 7051-7055.	2.0	37
21	cis-Câ•€ Bond and Amide Regulated Oriented Supramolecular Assembly on Two-Dimensional Atomic Crystals. Journal of Physical Chemistry C, 2019, 123, 30996-31002.	3.1	1
22	Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe ₂ . Nano Letters, 2019, 19, 761-769.	9.1	67
23	Current Rectification in a Structure: ReSe2/Au Contacts on Both Sides of ReSe2. Nanoscale Research Letters, 2019, 14, 1.	5.7	401
24	Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2. Nano Letters, 2018, 18, 2179-2185.	9.1	11
25	Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. Journal of the American Chemical Society, 2018, 140, 1715-1724.	13.7	379
26	Dissipative Rogue Waves Among Noise-Like Pulses in a Tm Fiber Laser Mode Locked by a Monolayer MoS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	28
27	Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature Materials, 2018, 17, 1108-1114.	27.5	348
28	Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS ₂ . Nano Letters, 2018, 18, 3435-3440.	9.1	69
29	Atomically Resolved Observation of Continuous Interfaces between an As-Grown MoS ₂ Monolayer and a WS ₂ /MoS ₂ Heterobilayer on SiO ₂ . ACS Applied Nano Materials, 2018, 1, 2041-2048.	5.0	13
30	Highâ€Mobility Multilayered MoS ₂ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1604540.	21.0	214
31	Twoâ€Dimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie - International Edition, 2017, 56, 3611-3615.	13.8	92
32	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> â€TiSe ₂ by Atmospheric Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8981-8985.	13.8	48
33	Twoâ€Dimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie, 2017, 129, 3665-3669.	2.0	9
34	SWCNTâ€MoS ₂ â€6WCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
35	Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Scientific Reports, 2017, 7, 8323.	3.3	15
36	Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly. Nature Communications, 2017, 8, 377.	12.8	30

#	Article	IF	CITATIONS
37	Robust Stacking-Independent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. ACS Nano, 2017, 11, 12020-12026.	14.6	130
38	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> a€TiSe ₂ by Atmospheric Oxidation. Angewandte Chemie, 2017, 129, 9109-9113.	2.0	2
39	Modulating Photoluminescence of Monolayer Molybdenum Disulfide by Metal–Insulator Phase Transition in Active Substrates. Small, 2016, 12, 3976-3984.	10.0	30
40	Controlled Synthesis of Two-Dimensional 1 <i>T</i> -TiSe ₂ with Charge Density Wave Transition by Chemical Vapor Transport. Journal of the American Chemical Society, 2016, 138, 16216-16219.	13.7	80
41	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research, 2016, 9, 2182-2189.	10.4	44
42	Universal Transfer and Stacking of Chemical Vapor Deposition Grown Two-Dimensional Atomic Layers with Water-Soluble Polymer Mediator. ACS Nano, 2016, 10, 5237-5242.	14.6	70
43	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	12.8	379
44	Atomic MoS ₂ monolayers synthesized from a metal–organic complex by chemical vapor deposition. Nanoscale, 2016, 8, 4486-4490.	5 . 6	23
45	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	10.4	30
46	Twoâ€Dimensional Layered Heterostructures Synthesized from Core–Shell Nanowires. Angewandte Chemie - International Edition, 2015, 54, 8957-8960.	13.8	78
47	Facile synthesis and phase transition of V ₂ O ₃ nanobelts. RSC Advances, 2015, 5, 17782-17785.	3.6	31
48	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	13.7	655
49	Chirality Enriched $(12,1)$ and $(11,3)$ Single-Walled Carbon Nanotubes for Biological Imaging. Journal of the American Chemical Society, 2012, 134, 16971-16974.	13.7	162
50	Densely aligned graphene nanoribbons at â^1/435 nm pitch. Nano Research, 2012, 5, 292-296.	10.4	30
51	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	16.7	628
52	Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research, 2010, 3, 387-394.	10.4	167
53	Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 2010, 5, 321-325.	31.5	757
54	Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458, 877-880.	27.8	2,313

LIYING JIAO

#	Article	IF	CITATION
55	Selective Positioning and Integration of Individual Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 205-209.	9.1	43
56	Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. Journal of Physical Chemistry C, 2008, 112, 17741-17744.	3.1	522
57	Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing. Journal of the American Chemical Society, 2008, 130, 12612-12613.	13.7	283
58	An electrical switch based on Ag-tetracyanoquinodimethane sandwiched by crossed carbon nanotube electrodes. Applied Physics Letters, 2008, 93, 123115.	3.3	12