Liying Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5543028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458, 877-880.	27.8	2,313
2	Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 2010, 5, 321-325.	31.5	757
3	Controlled Synthesis of Highly Crystalline MoS ₂ Flakes by Chemical Vapor Deposition. Journal of the American Chemical Society, 2013, 135, 5304-5307.	13.7	655
4	Spatially resolving edge states of chiral grapheneÂnanoribbons. Nature Physics, 2011, 7, 616-620.	16.7	628
5	Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. Journal of Physical Chemistry C, 2008, 112, 17741-17744.	3.1	522
6	Current Rectification in a Structure: ReSe2/Au Contacts on Both Sides of ReSe2. Nanoscale Research Letters, 2019, 14, 1.	5.7	401
7	Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016, 7, 11296.	12.8	379
8	Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. Journal of the American Chemical Society, 2018, 140, 1715-1724.	13.7	379
9	Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nature Materials, 2018, 17, 1108-1114.	27.5	348
10	Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing. Journal of the American Chemical Society, 2008, 130, 12612-12613.	13.7	283
11	Highâ€Mobility Multilayered MoS ₂ Flakes with Low Contact Resistance Grown by Chemical Vapor Deposition. Advanced Materials, 2017, 29, 1604540.	21.0	214
12	Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research, 2010, 3, 387-394.	10.4	167
13	Chirality Enriched (12,1) and (11,3) Single-Walled Carbon Nanotubes for Biological Imaging. Journal of the American Chemical Society, 2012, 134, 16971-16974.	13.7	162
14	A native oxide high-l̂º gate dielectric for two-dimensional electronics. Nature Electronics, 2020, 3, 473-478.	26.0	141
15	Robust Stacking-Independent Ultrafast Charge Transfer in MoS ₂ /WS ₂ Bilayers. ACS Nano, 2017, 11, 12020-12026.	14.6	130
16	Simultaneous synthesis and integration of two-dimensional electronic components. Nature Electronics, 2019, 2, 164-170.	26.0	95
17	Twoâ€Dimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie - International Edition, 2017, 56, 3611-3615.	13.8	92
18	Controlled Synthesis of Two-Dimensional 1 <i>T</i> -TiSe ₂ with Charge Density Wave Transition by Chemical Vapor Transport. Journal of the American Chemical Society, 2016, 138, 16216-16219.	13.7	80

Liying Jiao

#	Article	IF	CITATIONS
19	Twoâ€Dimensional Layered Heterostructures Synthesized from Core–Shell Nanowires. Angewandte Chemie - International Edition, 2015, 54, 8957-8960.	13.8	78
20	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2019, 58, 6977-6981.	13.8	76
21	Universal Transfer and Stacking of Chemical Vapor Deposition Grown Two-Dimensional Atomic Layers with Water-Soluble Polymer Mediator. ACS Nano, 2016, 10, 5237-5242.	14.6	70
22	Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS ₂ . Nano Letters, 2018, 18, 3435-3440.	9.1	69
23	Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe ₂ . Nano Letters, 2019, 19, 761-769.	9.1	67
24	Unveiling the Interfacial Effects for Enhanced Hydrogen Evolution Reaction on MoS ₂ /WTe ₂ Hybrid Structures. Small, 2019, 15, e1900078.	10.0	58
25	Phase Engineering of <scp>Twoâ€Đimensional</scp> Transition Metal Dichalcogenides. Chinese Journal of Chemistry, 2020, 38, 753-760.	4.9	56
26	Visualization of point defects in ultrathin layered 1T-PtSe ₂ . 2D Materials, 2019, 6, 041005.	4.4	52
27	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> â€TiSe ₂ by Atmospheric Oxidation. Angewandte Chemie - International Edition, 2017, 56, 8981-8985.	13.8	48
28	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research, 2016, 9, 2182-2189.	10.4	44
29	Selective Positioning and Integration of Individual Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 205-209.	9.1	43
30	Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	43
31	Activating a Two-Dimensional PtSe ₂ Basal Plane for the Hydrogen Evolution Reaction through the Simultaneous Generation of Atomic Vacancies and Pt Clusters. Nano Letters, 2021, 21, 3857-3863.	9.1	40
32	Unveiling the Layerâ€Dependent Catalytic Activity of PtSe ₂ Atomic Crystals for the Hydrogen Evolution Reaction. Angewandte Chemie, 2019, 131, 7051-7055.	2.0	37
33	SWCNTâ€MoS ₂ â€SWCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
34	Facile synthesis and phase transition of V ₂ O ₃ nanobelts. RSC Advances, 2015, 5, 17782-17785.	3.6	31
35	Densely aligned graphene nanoribbons at â^1⁄435 nm pitch. Nano Research, 2012, 5, 292-296.	10.4	30
36	Metallic and ferromagnetic MoS2 nanobelts with vertically aligned edges. Nano Research, 2015, 8, 2946-2953.	10.4	30

LIYING JIAO

#	Article	IF	CITATIONS
37	Modulating Photoluminescence of Monolayer Molybdenum Disulfide by Metal–Insulator Phase Transition in Active Substrates. Small, 2016, 12, 3976-3984.	10.0	30
38	Probing the crystallographic orientation of two-dimensional atomic crystals with supramolecular self-assembly. Nature Communications, 2017, 8, 377.	12.8	30
39	Dissipative Rogue Waves Among Noise-Like Pulses in a Tm Fiber Laser Mode Locked by a Monolayer MoS2 Saturable Absorber. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-7.	2.9	28
40	Carrier mobility tuning of MoS2 by strain engineering in CVD growth process. Nano Research, 2021, 14, 2314.	10.4	27
41	Highly crystalline ReSe ₂ atomic layers synthesized by chemical vapor transport. InformaÄnÃ- Materiály, 2019, 1, 552-558.	17.3	24
42	Atomic MoS ₂ monolayers synthesized from a metal–organic complex by chemical vapor deposition. Nanoscale, 2016, 8, 4486-4490.	5.6	23
43	Chemical Synthesis and Integration ofÂHighly Conductive PdTe ₂ Âwith Lowâ€Dimensional Semiconductors for pâ€Type Transistors with Low Contact Barriers. Advanced Materials, 2021, 33, e2101150.	21.0	16
44	Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Scientific Reports, 2017, 7, 8323.	3.3	15
45	Fast growth of large single-crystalline WS2 monolayers via chemical vapor deposition. Nano Research, 2021, 14, 1659-1662.	10.4	14
46	Atomically Resolved Observation of Continuous Interfaces between an As-Grown MoS ₂ Monolayer and a WS ₂ /MoS ₂ Heterobilayer on SiO ₂ . ACS Applied Nano Materials, 2018, 1, 2041-2048.	5.0	13
47	An electrical switch based on Ag-tetracyanoquinodimethane sandwiched by crossed carbon nanotube electrodes. Applied Physics Letters, 2008, 93, 123115.	3.3	12
48	Electrical Stressing Induced Monolayer Vacancy Island Growth on TiSe2. Nano Letters, 2018, 18, 2179-2185.	9.1	11
49	1D/2D Heterostructures as Ultrathin Catalysts for Hydrogen Evolution Reaction. Small, 2020, 16, e2004296.	10.0	10
50	Phase Transition Photodetection in Charge Density Wave Tantalum Disulfide. Nano Letters, 2020, 20, 6725-6731.	9.1	10
51	Rapid and Large-Scale Quality Assessment of Two-Dimensional MoS ₂ Using Sulfur Particles with Optical Visualization. Nano Letters, 2021, 21, 1260-1266.	9.1	10
52	Twoâ€Đimensional Semiconductors Grown by Chemical Vapor Transport. Angewandte Chemie, 2017, 129, 3665-3669.	2.0	9
53	Photocarrier Dynamics in MoTe ₂ Nanofilms with 2 <i>H</i> and Distorted 1 <i>T</i> Lattice Structures. ACS Applied Materials & Interfaces, 2021, 13, 44703-44710.	8.0	6
54	Growth of Single-crystalline Transition Metal Dichalcogenides Monolayers with Large-size. Chemical Research in Chinese Universities, 2020, 36, 511-517.	2.6	5

LIYING JIAO

#	Article	IF	CITATIONS
55	Electrochemical Construction of Edgeâ€Contacted Metalâ€Semiconductor Junctions with Low Contact Barrier. Advanced Materials, 2022, 34, .	21.0	5
56	Suppression of the Charge Density Wave State in Twoâ€Dimensional 1 <i>T</i> â€TiSe ₂ by Atmospheric Oxidation. Angewandte Chemie, 2017, 129, 9109-9113.	2.0	2
57	cis-Câ•C Bond and Amide Regulated Oriented Supramolecular Assembly on Two-Dimensional Atomic Crystals. Journal of Physical Chemistry C, 2019, 123, 30996-31002.	3.1	1
58	Anomalous Linear Layer-Dependent Blue Shift of Ultraviolet-Range Interband Transition in Two-Dimensional MoS ₂ . Journal of Physical Chemistry C, 2020, 124, 1609-1616.	3.1	1