Kyle Ellrott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5541430/publications.pdf Version: 2024-02-01

KVIE FLIDOTT

#	Article	IF	CITATIONS
1	Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. Cell Genomics, 2022, 2, 100085.	6.5	59
2	A community challenge to evaluate RNA-seq, fusion detection, and isoform quantification methods for cancer discovery. Cell Systems, 2021, 12, 827-838.e5.	6.2	15
3	<tt>neoepiscope</tt> improves neoepitope prediction with multivariant phasing. Bioinformatics, 2020, 36, 713-720.	4.1	23
4	A community effort to create standards for evaluating tumor subclonal reconstruction. Nature Biotechnology, 2020, 38, 97-107.	17.5	58
5	Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples. Nature Communications, 2020, 11, 4748.	12.8	27
6	A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer. Nature Genetics, 2020, 52, 448-457.	21.4	104
7	Exploring Integrative Analysis Using the BioMedical Evidence Graph. JCO Clinical Cancer Informatics, 2020, 4, 147-159.	2.1	4
8	Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges. Genome Biology, 2019, 20, 195.	8.8	19
9	Population-level distribution and putative immunogenicity of cancer neoepitopes. BMC Cancer, 2018, 18, 414.	2.6	32
10	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	6.2	605
11	Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection. Genome Biology, 2018, 19, 188.	8.8	42
12	Valection: design optimization for validation and verification studies. BMC Bioinformatics, 2018, 19, 339.	2.6	2
13	Germline contamination and leakage in whole genome somatic single nucleotide variant detection. BMC Bioinformatics, 2018, 19, 28.	2.6	8
14	A Community Challenge for Inferring Genetic Predictors of Gene Essentialities through Analysis of a Functional Screen of Cancer Cell Lines. Cell Systems, 2017, 5, 485-497.e3.	6.2	19
15	TumorMap: Exploring the Molecular Similarities of Cancer Samples in an Interactive Portal. Cancer Research, 2017, 77, e111-e114.	0.9	59
16	Prophetic Granger Causality to infer gene regulatory networks. PLoS ONE, 2017, 12, e0170340.	2.5	10
17	Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection. Nature Methods, 2015, 12, 623-630.	19.0	282
18	Abstract PR02: Multiple Pathway Learning accurately predicts gene essentiality in the Cancer Cell Line Encyclopedia. , 2015, , .		0

Kyle Ellrott

#	Article	IF	CITATIONS
19	Abstract A2-64: A signature catalog to classify tumor mixtures: Application to recognition of metastatic disease in prostate cancer. , 2015, , .		Ο
20	Abstract PR10: Multiple Pathway Learning accurately predicts gene essentiality in the Cancer Cell Line Encyclopedia. , 2015, , .		0
21	Abstract B1-37: A signature catalog to classify tumor mixtures: application to recognition of metastatic disease in prostate cancer. , 2015, , .		Ο
22	Global optimization of somatic variant identification in cancer genomes with a global community challenge. Nature Genetics, 2014, 46, 318-319.	21.4	42
23	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	28.9	3,979
24	The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics, 2013, 45, 1113-1120.	21.4	6,265
25	The UCSC Cancer Genomics Browser: update 2013. Nucleic Acids Research, 2013, 41, D949-D954.	14.5	172
26	Enabling transparent and collaborative computational analysis of 12 tumor types within The Cancer Genome Atlas. Nature Genetics, 2013, 45, 1121-1126.	21.4	102
27	Abstract 2985: Predicting the impact of mutations in cancer using an integrated pathway approach. , 2012, , .		Ο
28	Abstract 5087: UCSC Cancer Genomics Browser 2.0. , 2012, , .		0
29	TOPSAN: a dynamic web database for structural genomics. Nucleic Acids Research, 2011, 39, D494-D496.	14.5	17
30	Abstract A39: The UCSC Cancer Genomics Browser. , 2011, , .		0
31	The structure of KPN03535 (gi 152972051), a novel putative lipoprotein fromKlebsiella pneumoniae, reveals an OB-fold. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1254-1260.	0.7	3
32	The structure of the first representative of Pfam family PF09836 reveals a two-domain organization and suggests involvement in transcriptional regulation. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1174-1181.	0.7	8
33	The structure of BVU2987 fromBacteroides vulgatusreveals a superfamily of bacterial periplasmic proteins with possible inhibitory function. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1265-1273.	0.7	8
34	Structures of the first representatives of Pfam family PF06684 (DUF1185) reveal a novel variant of theBacilluschorismate mutase fold and suggest a role in amino-acid metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1182-1189.	0.7	3
35	A conserved fold for fimbrial components revealed by the crystal structure of a putative fimbrial assembly protein (BT1062) from <i>Bacteroides thetaiotaomicron</i> at 2.2â€Ã resolution. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1281-1286.	0.7	9
36	Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1335-1346.	0.7	8

Kyle Ellrott

#	Article	IF	CITATIONS
37	Structure of the Î ³ - <scp>D</scp> -glutamyl- <scp>L</scp> -diamino acid endopeptidase YkfC from <i>Bacillus cereus</i> in complex with <scp>L</scp> -Ala-Î ³ - <scp>D</scp> -Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1354-1364.	0.7	64
38	Structure of a membrane-attack complex/perforin (MACPF) family protein from the human gut symbiontBacteroides thetaiotaomicron. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1297-1305.	0.7	30
39	Structure of <i>Bacteroides thetaiotaomicron</i> BT2081 at 2.05â€Ã resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1287-1296.	0.7	2
40	Structure of BT_3984, a member of the SusD/RagB family of nutrient-binding molecules. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1274-1280.	0.7	11
41	The crystal structure of a bacterial Sufuâ€like protein defines a novel group of bacterial proteins that are similar to the Nâ€terminal domain of human Sufu. Protein Science, 2010, 19, 2131-2140.	7.6	12
42	Expansion of the Protein Repertoire in Newly Explored Environments: Human Gut Microbiome Specific Protein Families. PLoS Computational Biology, 2010, 6, e1000798.	3.2	52
43	Bacterial Pleckstrin Homology Domains: A Prokaryotic Origin for the PH Domain. Journal of Molecular Biology, 2010, 396, 31-46.	4.2	32
44	Structural and Functional Characterizations of SsgB, a Conserved Activator of Developmental Cell Division in Morphologically Complex Actinomycetes. Journal of Biological Chemistry, 2009, 284, 25268-25279.	3.4	23
45	A Historical Perspective of Template-Based Protein Structure Prediction. , 2008, 413, 3-42.		20
46	IMPROVING THE PERFORMANCE OF PROTEIN THREADING USING INSERTION/DELETION FREQUENCY ARRAYS. Journal of Bioinformatics and Computational Biology, 2008, 06, 585-602.	0.8	1
47	IMPROVEMENT IN PROTEIN SEQUENCE-STRUCTURE ALIGNMENT USING INSERTION/DELETION FREQUENCY ARRAYS. , 2007, , .		6
48	Improvement in protein sequence-structure alignment using insertion/deletion frequency arrays. Computational Systems Bioinformatics / Life Sciences Society Computational Systems Bioinformatics Conference, 2007, 6, 335-42.	0.4	5
49	A generalized threading model using integer programming that allows for secondary structure element deletion. Genome Informatics, 2006, 17, 248-58.	0.4	0
50	PROSPECT-PSPP: an automatic computational pipeline for protein structure prediction. Nucleic Acids Research, 2004, 32, W522-W525.	14.5	20
51	A computational pipeline for protein structure prediction and analysis at genome scale. Bioinformatics, 2003, 19, 1985-1996.	4.1	23
52	PROSPECT II: protein structure prediction program for genome-scale applications. Protein Engineering, Design and Selection, 2003, 16, 641-650.	2.1	89
53	Identifying transcription factor binding sites through Markov chain optimization. Bioinformatics, 2002, 18, S100-S109.	4.1	71