
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiversity–productivity relationships in a natural grassland community vary under diversity loss scenarios. Journal of Ecology, 2022, 110, 210-220.	1.9	10
2	The Fine Art of Scientific Advocacy: A Tribute to Tom Lovejoy. Science Advances, 2022, 8, eabn9704.	4.7	0
3	Diversity and extinction risk are inversely related at a global scale. Ecology Letters, 2022, 25, 697-707.	3.0	18
4	Biodiversity underpins fisheries resilience to exploitation in the Amazon river basin. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	7
5	Herbivore absence can shift dry heath tundra from carbon source to sink during peak growing season. Environmental Research Letters, 2021, 16, 024027.	2.2	13
6	Groundwater depletion will reduce cropping intensity in India. Science Advances, 2021, 7, .	4.7	87
7	Trophic complexity alters the diversity–multifunctionality relationship in experimental grassland mesocosms. Ecology and Evolution, 2021, 11, 6471-6479.	0.8	6
8	Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon. Nature Food, 2021, 2, 192-197.	6.2	14
9	Declining diversity of wild-caught species puts dietary nutrient supplies at risk. Science Advances, 2021, 7, .	4.7	20
10	Environmental risk in an age of biotic impoverishment. Current Biology, 2021, 31, R1164-R1169.	1.8	0
11	Greater stability of carbon capture in species-rich natural forests compared to species-poor plantations. Environmental Research Letters, 2020, 15, 034011.	2.2	46
12	Tree diversity and carbon storage cobenefits in tropical humanâ€dominated landscapes. Conservation Letters, 2020, 13, e12699.	2.8	21
13	Contributions of financial, social and natural capital to food security around Kanha National Park in central India. Regional Environmental Change, 2020, 20, 1.	1.4	9
14	Positive correlations in species functional contributions drive the response of multifunctionality to biodiversity loss. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20192501.	1.2	12
15	A mechanism of expansion: Arctic deciduous shrubs capitalize on warming-induced nutrient availability. Oecologia, 2020, 192, 671-685.	0.9	8
16	Biodiversity and thermal ecological function: The influence of freshwater algal diversity on local thermal environments. Ecology and Evolution, 2019, 9, 6949-6958.	0.8	1
17	Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology, 2018, 99, 1099-1107.	1.5	30
18	Smallholder response to environmental change: Impacts of coffee leaf rust in a forest frontier in Mexico. Land Use Policy, 2018, 79, 463-474.	2.5	27

#	Article	IF	CITATIONS
19	Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology, 2016, 97, 2293-2302.	1.5	56
20	Multitrophic diversity effects of network degradation. Ecology and Evolution, 2016, 6, 4936-4946.	0.8	12
21	Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. Journal of Ecology, 2016, 104, 734-743.	1.9	58
22	Scaling Thermal Properties from the Leaf to the Canopy in the Alaskan Arctic Tundra. Arctic, Antarctic, and Alpine Research, 2016, 48, 739-754.	0.4	13
23	Biodiversity and human well-being: an essential link for sustainable development. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20162091.	1.2	137
24	Biodiversity in the Anthropocene: prospects and policy. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20162094.	1.2	82
25	Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150277.	1.8	169
26	Bird assemblage vulnerability depends on the diversity and biogeographic histories of islands. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10109-10114.	3.3	14
27	Opposing effects of different soil organic matter fractions on crop yields. Ecological Applications, 2016, 26, 2072-2085.	1.8	30
28	Conservation of tree species of late succession and conservation concern in coffee agroforestry systems. Agriculture, Ecosystems and Environment, 2016, 219, 32-41.	2.5	30
29	Biodiversity as a Goal and Driver of Restoration. , 2016, , 57-89.		4
30	10 Years Later. Advances in Ecological Research, 2015, 53, 1-53.	1.4	43
31	Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 2015, 30, 1723-1736.	1.9	30
32	Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture. Frontiers in Microbiology, 2015, 6, 90.	1.5	26
33	Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends in Ecology and Evolution, 2015, 30, 531-539.	4.2	274
34	Agricultural intensification and the functional capacity of soil microbes on smallholder African farms. Journal of Applied Ecology, 2015, 52, 744-752.	1.9	42
35	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
36	The use of farmers' knowledge in coffee agroforestry management: implications for the conservation of tree biodiversity. Ecosphere, 2015, 6, 1-17.	1.0	57

#	Article	IF	CITATIONS
37	The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agriculture, Ecosystems and Environment, 2014, 189, 154-163.	2.5	44
38	The importance of rare species: a traitâ€based assessment of rare species contributions to functional diversity and possible ecosystem function in tallâ€grass prairies. Ecology and Evolution, 2014, 4, 104-112.	0.8	135
39	Relationships of overstory trees and shrubs with forage species portray ecosystem service interactions in smallholder fallows. Agroforestry Systems, 2013, 87, 451-464.	0.9	2
40	Ecosystem Services: Is a Planet Servicing One Species Likely to Function?. , 2013, , 303-321.		7
41	Biotic impoverishment. Elementa, 2013, 1, .	1.1	4
42	Biodiversity loss and its impact on humanity. Nature, 2012, 486, 59-67.	13.7	4,969
43	The Functions of Biological Diversity in an Age of Extinction. Science, 2012, 336, 1401-1406.	6.0	644
44	Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology, 2011, 92, 1573-1581.	1.5	605
45	Ecosystem services, targets, and indicators for the conservation and sustainable use of biodiversity. Frontiers in Ecology and the Environment, 2011, 9, 512-520.	1.9	91
46	The effect of agricultural diversity and crop choice on functional capacity change in grassland conversions. Journal of Applied Ecology, 2011, 48, 609-618.	1.9	33
47	Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology, 2010, 16, 358-372.	4.2	680
48	Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology, 2010, 16, 889-889.	4.2	22
49	Advancing realism in biodiversity research. Trends in Ecology and Evolution, 2008, 23, 414-416.	4.2	69
50	Green with Complexity. Science, 2008, 319, 913-914.	6.0	10
51	The impact of elevated CO ₂ , increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biology, 2007, 13, 1960-1971.	4.2	74
52	Species Diversity and Ecosystem Functioning. Science, 2006, 312, 846-848.	6.0	6
53	Species Loss and Aboveground Carbon Storage in a Tropical Forest. Science, 2005, 310, 1029-1031.	6.0	390
54	6 . Models of Ecosystem Reliability and Their Implications for the Question of Expendability. , 2003, ,		1

109-139.

#	Article	IF	CITATIONS
55	DISENTANGLING THE IMPACTS OF DIVERSITY ON ECOSYSTEM FUNCTIONING IN COMBINATORIAL EXPERIMENTS. Ecology, 2002, 83, 2925-2935.	1.5	123
56	ECOSYSTEM CONSEQUENCES OF BIODIVERSITY LOSS: THE EVOLUTION OF A PARADIGM. Ecology, 2002, 83, 1537-1552.	1.5	361
57	Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO2 and N availability regimes? A field test with 16 grassland species. New Phytologist, 2001, 150, 435-448.	3.5	240
58	Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition. Nature, 2001, 410, 809-810.	13.7	517
59	Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos, 2000, 91, 97-108.	1.2	543
60	Producer–decomposer co-dependency influences biodiversity effects. Nature, 2000, 403, 762-764.	13.7	223
61	Power behind diversity's throne. Nature, 1999, 401, 653-654.	13.7	7
62	Plant neighborhood diversity and production. Ecoscience, 1999, 6, 355-365.	0.6	43
63	A more reliable design for biodiversity study?. Nature, 1998, 394, 30-30.	13.7	16
64	CONSUMER SPECIES RICHNESS AND AUTOTROPHIC BIOMASS. Ecology, 1998, 79, 2603-2615.	1.5	84
65	Species Redundancy and Ecosystem Reliability. Conservation Biology, 1998, 12, 39-45.	2.4	171
66	CONSUMER SPECIES RICHNESS AND AUTOTROPHIC BIOMASS. , 1998, 79, 2603.		2
67	Biodiversity enhances ecosystem reliability. Nature, 1997, 390, 507-509.	13.7	1,193
68	The value of the world's ecosystem services and natural capital. Nature, 1997, 387, 253-260.	13.7	15,321
69	Biodiversity and Ecosystem Properties. Science, 1997, 278, 1865c-1869.	6.0	104