Torsten Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5539328/publications.pdf

Version: 2024-02-01

471509 361022 1,261 35 17 35 citations h-index g-index papers 36 36 36 1050 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative Genomic Analysis Reveals Preserved Features in Organohalide-Respiring <i>Sulfurospirillum</i> Strains. MSphere, 2022, 7, e0093121.	2.9	3
2	<i>Geobacter</i> sp. Strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. Environmental Science & Environmental Science & Environ	10.0	13
3	Surface enhanced Raman spectroscopyâ€based evaluation of the membrane protein composition of the organohalideâ€respiring Sulfurospirillum multivorans. Journal of Raman Spectroscopy, 2021, 52, 458-467.	2.5	2
4	A Spectroscopically Validated Computational Investigation of Viable Reaction Intermediates in the Catalytic Cycle of the Reductive Dehalogenase PceA. Biochemistry, 2021, 60, 2022-2032.	2.5	9
5	Cobamide remodeling in the freshwater microalga Chlamydomonas reinhardtii. FEMS Microbiology Letters, 2020, 367, .	1.8	5
6	Tetrachloroethene respiration in Sulfurospirillum species is regulated by a twoâ€component system as unraveled by comparative genomics, transcriptomics, and regulator binding studies. MicrobiologyOpen, 2020, 9, e1138.	3.0	5
7	Calycomorphotria hydatis gen. nov., sp. nov., a novel species in the family Planctomycetaceae with conspicuous subcellular structures. Antonie Van Leeuwenhoek, 2020, 113, 1877-1887.	1.7	17
8	Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. Journal of Proteomics, 2019, 192, 10-17.	2.4	25
9	Structural and functional analysis of anlâ€serineOâ€phosphate decarboxylase involved in norcobamide biosynthesis. FEBS Letters, 2019, 593, 3040-3053.	2.8	4
10	Guided cobamide biosynthesis for heterologous production of reductive dehalogenases. Microbial Biotechnology, 2019, 12, 346-359.	4.2	15
11	A Retentive Memory of Tetrachloroethene Respiration in Sulfurospirillum halorespirans - involved Proteins and a possible link to Acetylation of a Two-Component Regulatory System. Journal of Proteomics, 2018, 181, 36-46.	2.4	12
12	Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans. Journal of Bacteriology, 2018, 200, .	2.2	18
13	Reductive tetrachloroethene dehalogenation in the presence of oxygen by Sulfurospirillum multivorans: physiological studies and proteome analysis. FEMS Microbiology Ecology, 2018, 94, .	2.7	13
14	Organohalide respiratory chains: composition, topology and key enzymes. FEMS Microbiology Ecology, 2018, 94, .	2.7	59
15	The organohalide-respiring bacterium Sulfurospirillum multivorans: a natural source for unusual cobamides. World Journal of Microbiology and Biotechnology, 2017, 33, 93.	3.6	11
16	Subtle changes in the active site architecture untangled overlapping substrate ranges and mechanistic differences of two reductive dehalogenases. FEBS Journal, 2017, 284, 3520-3535.	4.7	16
17	The complete genome of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum halorespirans. Journal of Biotechnology, 2017, 255, 33-36.	3.8	20
18	Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nature Communications, 2017, 8, 15858.	12.8	68

#	Article	IF	CITATIONS
19	Comparative Biochemistry of Organohalide Respiration. , 2016, , 397-427.		9
20	Selective, light-driven enzymatic dehalogenations of organic compounds. RSC Advances, 2016, 6, 84882-84886.	3.6	10
21	The <i>SMUL_1544</i> Gene Product Governs Norcobamide Biosynthesis in the Tetrachloroethene-Respiring Bacterium Sulfurospirillum multivorans. Journal of Bacteriology, 2016, 198, 2236-2243.	2.2	20
22	Proteomics of the organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans adapted to tetrachloroethene and other energy substrates. Scientific Reports, 2015, 5, 13794.	3.3	48
23	Exogenous 5,6â€dimethylbenzimidazole caused production of a nonâ€functional tetrachloroethene reductive dehalogenase in <i><scp>S</scp>ulfurospirillum multivorans</i> Microbiology, 2014, 16, 3361-3369.	3.8	49
24	Combined C and Cl Isotope Effects Indicate Differences between Corrinoids and Enzyme (<i>Sulfurospirillum multivorans</i> PceA) in Reductive Dehalogenation of Tetrachloroethene, But Not Trichloroethene. Environmental Science & Environmental Scien	10.0	71
25	Insights into organohalide respiration and the versatile catabolism of <scp><i>S</i></scp> <i>ulfurospirillum multivorans</i> gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16, 3562-3580.	3.8	76
26	Structural basis for organohalide respiration. Science, 2014, 346, 455-458.	12.6	220
27	Functional Heterologous Production of Reductive Dehalogenases from Desulfitobacterium hafniense Strains. Applied and Environmental Microbiology, 2014, 80, 4313-4322.	3.1	57
28	Impact of Vitamin B ₁₂ on Formation of the Tetrachloroethene Reductive Dehalogenase in Desulfitobacterium hafniense Strain Y51. Applied and Environmental Microbiology, 2012, 78, 8025-8032.	3.1	33
29	A Trimeric Supercomplex of the Oxygen-Tolerant Membrane-Bound [NiFe]-Hydrogenase from <i>Ralstonia eutropha</i> H16. Biochemistry, 2011, 50, 10836-10843.	2.5	42
30	H ₂ Conversion in the Presence of O ₂ as Performed by the Membraneâ€Bound [NiFe]â€Hydrogenase of <i>Ralstonia eutropha</i> . ChemPhysChem, 2010, 11, 1107-1119.	2.1	106
31	Concerted Action of Two Novel Auxiliary Proteins in Assembly of the Active Site in a Membrane-bound [NiFe] Hydrogenase. Journal of Biological Chemistry, 2009, 284, 2159-2168.	3.4	44
32	Retentive Memory of Bacteria: Long-Term Regulation of Dehalorespiration in <i>Sulfurospirillum multivorans</i> . Journal of Bacteriology, 2009, 191, 1650-1655.	2.2	44
33	Chaperones specific for the membraneâ€bound [NiFe]â€hydrogenase interact with the Tat signal peptide of the small subunit precursor in <i>Ralstonia eutropha</i> H16. Molecular Microbiology, 2007, 66, 453-467.	2.5	55
34	Veratrol-O-demethylase of Acetobacterium dehalogenans: ATP-dependent reduction of the corrinoid protein. Archives of Microbiology, 2005, 183, 378-384.	2.2	33
35	A non-dechlorinating strain of Dehalospirillum multivorans: evidence for a key role of the corrinoid cofactor in the synthesis of an active tetrachloroethene dehalogenase. Archives of Microbiology, 2002, 178, 443-449.	2.2	28