Samantha Husmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553863/publications.pdf

Version: 2024-02-01

22 521 12 19 g-index

22 22 22 22 624

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	3.7	6
2	Transparent aqueous rechargeable sodium-ion battery. Electrochimica Acta, 2022, 422, 140548.	5.2	10
3	Layered Titanium Niobium Oxides Derived from Solid-Solution Ti–Nb Carbides (MXene) as Anode Materials for Li-lon Batteries. ACS Applied Energy Materials, 2022, 5, 8132-8142.	5.1	9
4	Structural and chemical characterization of MoO ₂ /MoS ₂ triple-hybrid materials using electron microscopy in up to three dimensions. Nanoscale Advances, 2021, 3, 1067-1076.	4.6	2
5	Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles. ACS Applied Materials & Interfaces, 2021, 13, 61166-61179.	8.0	12
6	Electrospun vanadium sulfide / carbon hybrid fibers obtained via one-step thermal sulfidation for use as lithium-ion battery electrodes. Journal of Power Sources, 2020, 450, 227674.	7.8	19
7	Ionic liquid-based synthesis of MXene. Chemical Communications, 2020, 56, 11082-11085.	4.1	87
8	Chemically synthesized graphene as a precursor to Prussian blue-based nanocomposite: A multifunctional material for transparent aqueous K-ion battery or electrochromic device. Electrochimica Acta, 2020, 345, 136199.	5.2	30
9	High-performance aqueous rechargeable potassium batteries prepared via interfacial synthesis of a Prussian blue-carbon nanotube composite. Electrochimica Acta, 2020, 349, 136243.	5.2	34
10	Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Advances, 2019, 9, 14849-14858.	3.6	64
11	A multi-technique approach towards the mechanistic investigation of the electrodeposition of Prussian blue over carbon nanotubes film. Electrochimica Acta, 2019, 312, 380-391.	5.2	23
12	Effect of Pore Size on the Ion Electrosorption and Hydrogen/Deuterium Electrosorption Using Sodium Chloride in H ₂ O and D ₂ O. Journal of the Electrochemical Society, 2019, 166, A4158-A4167.	2.9	8
13	Sulfidation of Electrospun Vanadium Oxide Fiber Mats for Lithium-Ion Battery Electrodes. ECS Meeting Abstracts, 2019, , .	0.0	O
14	Photoanode for Aqueous Dyeâ€Sensitized Solar Cells based on a Novel Multicomponent Thin Film. ChemSusChem, 2018, 11, 1238-1245.	6.8	16
15	Carbon nanotube thin films modified with a mixture of Prussian blue and ruthenium purple: combining materials and properties. Journal of Solid State Electrochemistry, 2018, 22, 2003-2012.	2.5	7
16	Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: Improving cathode performance in aqueous metal-ions batteries. Electrochimica Acta, 2018, 283, 1339-1350.	5.2	23
17	Design of a Prussian Blue Analogue/Carbon Nanotube Thinâ€Film Nanocomposite: Tailored Precursor Preparation, Synthesis, Characterization, and Application. Chemistry - A European Journal, 2016, 22, 6643-6653.	3.3	27
18	Flexible, Transparent and Thin Films of Carbon Nanomaterials as Electrodes for Electrochemical Applications. Electrochimica Acta, 2016, 197, 200-209.	5.2	67

#	Article	IF	CITATIONS
19	Multifunctional carbon nanotubes/ruthenium purple thin films: preparation, characterization and study of application as sensors and electrochromic materials. Dalton Transactions, 2015, 44, 5985-5995.	3.3	20
20	Teaching Surface Tension Using Easy-to-do Experiments in Undergraduate Classes. Revista Virtual De Quimica, 2015, 7, .	0.4	0
21	Carbon nanotube/Prussian blue paste electrodes: Characterization and study of key parameters for application as sensors for determination of low concentration of hydrogen peroxide. Sensors and Actuators B: Chemical, 2014, 192, 782-790.	7.8	55
22	Electrodeposition of Prussian Blue/Carbon Nanotube Composites at a Liquidâ€'Liquid Interface. Journal of the Brazilian Chemical Society, 0, , .	0.6	2