
Narayanaswamy Srinivasan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5538133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PIC: Protein Interactions Calculator. Nucleic Acids Research, 2007, 35, W473-W476.	14.5	802
2	Conformations of disulfide bridges in proteins. International Journal of Peptide and Protein Research, 1990, 36, 147-155.	0.1	164
3	A genomic perspective of protein kinases in Plasmodium falciparum. Proteins: Structure, Function and Bioinformatics, 2004, 58, 180-189.	2.6	147
4	Structural Modes of Stabilization of Permissive Phosphorylation Sites in Protein Kinases: Distinct Strategies in Ser/Thr and Tyr Kinases. Journal of Molecular Biology, 2004, 339, 1025-1039.	4.2	134
5	Mutations in SARS-CoV-2 viral RNA identified in Eastern India: Possible implications for the ongoing outbreak in India and impact on viral structure and host susceptibility. Journal of Biosciences, 2020, 45, 1.	1.1	117
6	An evaluation of the performance of an automated procedure for comparative modelling of protein tertiary structure. Protein Engineering, Design and Selection, 1993, 6, 501-512.	2.1	111
7	A short survey on protein blocks. Biophysical Reviews, 2010, 2, 137-145.	3.2	107
8	Stability of domain structures in multi-domain proteins. Scientific Reports, 2011, 1, 40.	3.3	96
9	PALIa database of Phylogeny and ALIgnment of homologous protein structures. Nucleic Acids Research, 2001, 29, 61-65.	14.5	88
10	Interaction preferences across protein-protein interfaces of obligatory and non-obligatory components are different. BMC Structural Biology, 2005, 5, 15.	2.3	84
11	KinC: a database of protein kinases in genomes. Nucleic Acids Research, 2004, 32, 153D-155.	14.5	75
12	Protein flexibility in the light of structural alphabets. Frontiers in Molecular Biosciences, 2015, 2, 20.	3.5	71
13	Diversity in domain architectures of Ser/Thr kinases and their homologues in prokaryotes. BMC Genomics, 2005, 6, 129.	2.8	65
14	An overview of recent advances in structural bioinformatics of protein–protein interactions and a guide to their principles. Progress in Biophysics and Molecular Biology, 2014, 116, 141-150.	2.9	65
15	Small molecule inhibitors of HCV replication from Pomegranate. Scientific Reports, 2014, 4, 5411.	3.3	59
16	Extent of Structural Asymmetry in Homodimeric Proteins: Prevalence and Relevance. PLoS ONE, 2012, 7, e36688.	2.5	56
17	Structure-Based Phylogeny as a Diagnostic for Functional Characterization of Proteins with a Cupin Fold. PLoS ONE, 2009, 4, e5736.	2.5	54
18	Analysis of the protein kinome of <i>Entamoeba histolytica</i> . Proteins: Structure, Function and Bioinformatics, 2008, 71, 995-1006.	2.6	47

#	Article	IF	CITATIONS
19	The repertoire of protein kinases encoded in the draft version of the human genome: atypical variations and uncommon domain combinations. Genome Biology, 2002, 3, research0066.1.	9.6	42
20	Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene, 2006, 380, 1-13.	2.2	42
21	Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains. PLoS Computational Biology, 2018, 14, e1006008.	3.2	41
22	SUPFAMa database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes. Nucleic Acids Research, 2002, 30, 289-293.	14.5	40
23	An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure. Structure, 2018, 26, 499-512.e2.	3.3	38
24	A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Research, 2018, 150, 47-59.	4.1	38
25	SUPFAM: a database of sequence superfamilies of protein domains. BMC Bioinformatics, 2004, 5, 28.	2.6	36
26	Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily. PLoS ONE, 2015, 10, e0135507.	2.5	36
27	Understanding the role of domain–domain linkers in the spatial orientation of domains in multi-domain proteins. Journal of Biomolecular Structure and Dynamics, 2013, 31, 1467-1480.	3.5	35
28	SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARÎ ³ . Cell Reports, 2021, 35, 109190.	6.4	35
29	Conformational characteristics of asparaginyl residues in proteins. International Journal of Peptide and Protein Research, 1994, 44, 112-122.	0.1	34
30	De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods. Biology Direct, 2015, 10, 38.	4.6	34
31	NU-6027 Inhibits Growth of Mycobacterium tuberculosis by Targeting Protein Kinase D and Protein Kinase G. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	34
32	The beta hairpin structure within ribosomal protein S5 mediates interplay between domains II and IV and regulates HCV IRES function. Nucleic Acids Research, 2015, 43, 2888-2901.	14.5	33
33	Repurposing drugs against the main protease of SARS-CoV-2: mechanism-based insights supported by available laboratory and clinical data. Molecular Omics, 2020, 16, 474-491.	2.8	33
34	Comparison of sequence-based and structure-based phylogenetic trees of homologous proteins: Inferences on protein evolution. Journal of Biosciences, 2007, 32, 83-96.	1.1	32
35	Structure–function studies of <i><scp>HNF1A</scp></i> (<scp>MODY3</scp>) gene mutations in South Indian patients with monogenic diabetes. Clinical Genetics, 2016, 90, 486-495.	2.0	32
36	Classification of Protein Kinases on the Basis of Both Kinase and Non-Kinase Regions. PLoS ONE, 2010, 5, e12460.	2.5	31

#	Article	IF	CITATIONS
37	Roles of residues in the interface of transient protein-protein complexes before complexation. Scientific Reports, 2012, 2, 334.	3.3	30
38	MulPSSM: a database of multiple position-specific scoring matrices of protein domain families. Nucleic Acids Research, 2006, 34, D243-D246.	14.5	29
39	Interface residues of transient protein-protein complexes have extensive intra-protein interactions apart from inter-protein interactions. Biology Direct, 2019, 14, 1.	4.6	29
40	A data integration approach to predict host-pathogen protein-protein interactions: application to recognize protein interactions between human and a malarial parasite. In Silico Biology, 2008, 8, 235-50.	0.9	29
41	Interaction interfaces of protein domains are not topologically equivalent across families within superfamilies: Implications for metabolic and signaling pathways. Proteins: Structure, Function and Bioinformatics, 2004, 58, 339-353.	2.6	27
42	Use of multiple profiles corresponding to a sequence alignment enables effective detection of remote homologues. Bioinformatics, 2005, 21, 2821-2826.	4.1	27
43	Bioinformatic and mutational studies of related toxin–antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. Journal of Biological Chemistry, 2019, 294, 9048-9063.	3.4	27
44	Survey for g-proteins in the prokaryotic genomes: Prediction of functional roles based on classification. Proteins: Structure, Function and Bioinformatics, 2003, 52, 585-597.	2.6	25
45	Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases. Protein Science, 2002, 11, 1580-1584.	7.6	24
46	Influence of Disease-Causing Mutations on Protein Structural Networks. Frontiers in Molecular Biosciences, 2020, 7, 620554.	3.5	23
47	Assessment of a Rigorous Transitive Profile Based Search Method to Detect Remotely Similar Proteins. Journal of Biomolecular Structure and Dynamics, 2005, 23, 283-298.	3.5	22
48	Homology-Based Prediction of Potential Protein-Protein Interactions between Human Erythrocytes and Plasmodium falciparum. Bioinformatics and Biology Insights, 2015, 9, BBI.S31880.	2.0	21
49	Recognizing drug targets using evolutionary information: implications for repurposing FDA-approved drugs against Mycobacterium tuberculosis H37Rv. Molecular BioSystems, 2015, 11, 3316-3331.	2.9	20
50	Specificity and stability of transient protein–protein interactions. Current Opinion in Structural Biology, 2017, 44, 77-86.	5.7	20
51	Discrete analyses of protein dynamics. Journal of Biomolecular Structure and Dynamics, 2020, 38, 2988-3002.	3.5	20
52	A Framework for Classification of Prokaryotic Protein Kinases. PLoS ONE, 2010, 5, e10608.	2.5	20
53	Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. BMC Structural Biology, 2012, 12, 6.	2.3	19
54	Structural interpretation of site-directed mutagenesis and specificity of the catalytic subunit of protein kinase CK2 using comparative modelling. Protein Engineering, Design and Selection, 1999, 12, 119-127.	2.1	18

#	Article	IF	CITATIONS
55	Cascade PSI-BLAST web server: a remote homology search tool for relating protein domains. Nucleic Acids Research, 2006, 34, W143-W146.	14.5	17
56	Structural Insights into Saccharomyces cerevisiae Msh4–Msh5 Complex Function Using Homology Modeling. PLoS ONE, 2013, 8, e78753.	2.5	17
57	Stereochemical Assessment of (φ,Ï [^]) Outliers in Protein Structures Using Bond Geometry-Specific Ramachandran Steric-Maps. Structure, 2019, 27, 1875-1884.e2.	3.3	17
58	Exploring anti-malarial potential of FDA approved drugs: an in silico approach. Malaria Journal, 2017, 16, 290.	2.3	16
59	Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Scientific Reports, 2019, 9, 1163.	3.3	16
60	Filling-in Void and Sparse Regions in Protein Sequence Space by Protein-Like Artificial Sequences Enables Remarkable Enhancement in Remote Homology Detection Capability. Journal of Molecular Biology, 2014, 426, 962-979.	4.2	15
61	In silico prediction of protein flexibility with local structure approach. Biochimie, 2019, 165, 150-155.	2.6	15
62	Mechanism of CcdA-Mediated Rejuvenation of DNA Gyrase. Structure, 2020, 28, 562-572.e4.	3.3	15
63	Structural Compromise of Disallowed Conformations in Peptide and Protein Structures. Protein and Peptide Letters, 2007, 14, 672-682.	0.9	14
64	Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures. BMC Structural Biology, 2010, 10, 17.	2.3	14
65	Novel insertion and deletion mutants of RpoB that render Mycobacterium smegmatis RNA polymerase resistant to rifampicin-mediated inhibition of transcription. Microbiology (United Kingdom), 2010, 156, 1565-1573.	1.8	14
66	Re-analysis of cryoEM data on HCV IRES bound to 40S subunit of human ribosome integrated with recent structural information suggests new contact regions between ribosomal proteins and HCV RNA. RNA Biology, 2014, 11, 891-905.	3.1	14
67	Investigations of Ramachandran disallowed conformations in protein domain families. International Journal of Biological Macromolecules, 2014, 63, 119-125.	7.5	14
68	Resolving protein structureâ€functionâ€binding site relationships from a binding site similarity network perspective. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1319-1335.	2.6	14
69	iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach. Source Code for Biology and Medicine, 2019, 14, 5.	1.7	14
70	Structural and molecular basis of interaction of HCV non-structural protein 5A with human casein kinase 11± and PKR. BMC Structural Biology, 2012, 12, 28.	2.3	13
71	Key challenges for the creation and maintenance of specialist protein resources. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1005-1013.	2.6	13
72	A structural entropy index to analyse local conformations in intrinsically disordered proteins. Journal of Structural Biology, 2020, 210, 107464.	2.8	13

#	Article	IF	CITATIONS
73	Strategies for the effective identification of remotely related sequences in multiple PSSM search approach. Proteins: Structure, Function and Bioinformatics, 2007, 67, 789-794.	2.6	12
74	NrichD database: sequence databases enriched with computationally designed protein-like sequences aid in remote homology detection. Nucleic Acids Research, 2015, 43, D300-D305.	14.5	12
75	Knowledge-based prediction of protein backbone conformation using a structural alphabet. PLoS ONE, 2017, 12, e0186215.	2.5	12
76	AlignHUSH: Alignment of HMMs using structure and hydrophobicity information. BMC Bioinformatics, 2011, 12, 275.	2.6	11
77	CLAP: A web-server for automatic classification of proteins with special reference to multi-domain proteins. BMC Bioinformatics, 2014, 15, 343.	2.6	11
78	From workstations to workbenches: Towards predicting physicochemically viable protein–protein interactions across a host and a pathogen. IUBMB Life, 2014, 66, 759-774.	3.4	10
79	SInCRe—structural interactome computational resource for <i>Mycobacterium tuberculosis</i> . Database: the Journal of Biological Databases and Curation, 2015, 2015, bav060.	3.0	10
80	Determination of crystal structures of proteins of unknown identity using a marathon molecular replacement procedure: structure of <i>Stenotrophomonas maltophilia</i> phosphate-binding protein. Acta Crystallographica Section D: Structural Biology, 2016, 72, 1081-1089.	2.3	10
81	Protein sequence design and its applications. Current Opinion in Structural Biology, 2016, 37, 71-80.	5.7	10
82	Molecular and Structural Basis of Cross-Reactivity in M. tuberculosis Toxin–Antitoxin Systems. Toxins, 2020, 12, 481.	3.4	10
83	Identification of Potential Binders of Mtb Universal Stress Protein (Rv1636) Through an in silico Approach and Insights Into Compound Selection for Experimental Validation. Frontiers in Molecular Biosciences, 2021, 8, 599221.	3.5	10
84	Effective detection of remote homologues by searching in sequence dataset of a protein domain fold. FEBS Letters, 2003, 552, 225-230.	2.8	9
85	PRODOC: a resource for the comparison of tethered protein domain architectures with in-built information on remotely related domain families. Nucleic Acids Research, 2005, 33, W126-W129.	14.5	9
86	Comparative kinomics of human and chimpanzee reveal unique kinship and functional diversity generated by new domain combinations. BMC Genomics, 2008, 9, 625.	2.8	9
87	Cascaded walks in protein sequence space: use of artificial sequences in remote homology detection between natural proteins. Molecular BioSystems, 2012, 8, 2076.	2.9	9
88	Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: Insights into structure and function. Tuberculosis, 2015, 95, 14-25.	1.9	9
89	Use of evolutionary information in the fitting of atomic level protein models in low resolution cryo-EM map of a protein assembly improves the accuracy of the fitting. Journal of Structural Biology, 2016, 195, 294-305.	2.8	9
90	Longâ€range molecular dynamics show that inactive forms of Protein Kinase A are more dynamic than active forms. Protein Science, 2019, 28, 543-560.	7.6	9

#	Article	lF	CITATIONS
91	Genomeâ€wide and structural analyses of pseudokinases encoded in the genome of <scp><i>Arabidopsis thaliana</i></scp> provide functional insights. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1620-1638.	2.6	9
92	Evolutionary Divergence of Plasmodium falciparum: Sequences, Protein- Protein Interactions, Pathways and Processes. Infectious Disorders - Drug Targets, 2009, 9, 257-271.	0.8	9
93	Enhanced functional and structural domain assignments using remote similarity detection procedures for proteins encoded in the genome ofMycobacterium tuberculosis H37Rv. Journal of Biosciences, 2004, 29, 245-259.	1.1	8
94	Recognition of Interaction Interface Residues in Low-Resolution Structures of Protein Assemblies Solely from the Positions of Cα Atoms. PLoS ONE, 2009, 4, e4476.	2.5	8
95	Classification of Nonenzymatic Homologues of Protein Kinases. Comparative and Functional Genomics, 2009, 2009, 1-17.	2.0	8
96	The relationship between classification of multi-domain proteins using an alignment-free approach and their functions: a case study with immunoglobulins. Molecular BioSystems, 2014, 10, 1082.	2.9	8
97	Creating a specialist protein resource network: a meeting report for the protein bioinformatics and community resources retreat: Figure 1 Database: the Journal of Biological Databases and Curation, 2015, 2015, bav063.	3.0	8
98	In Silico Modeling of FDA-Approved Drugs for Discovery of Anticandida Agents: A Drug-Repurposing Approach. , 2019, , 463-526.		8
99	Fold combinations in multi-domain proteins. Bioinformation, 2019, 15, 342-350.	0.5	8
100	Accurate prediction of interfacial residues in twoâ€domain proteins using evolutionary information: Implications for threeâ€dimensional modeling. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1219-1234.	2.6	7
101	Weak conservation of structural features in the interfaces of homologous transient protein–protein complexes. Protein Science, 2015, 24, 1856-1873.	7.6	7
102	A Gaussian network model study suggests that structural fluctuations are higher for inactive states than active states of protein kinases. Molecular BioSystems, 2015, 11, 1079-1095.	2.9	7
103	Conservation of structural fluctuations in homologous protein kinases and its implications on functional sites. Proteins: Structure, Function and Bioinformatics, 2016, 84, 957-978.	2.6	7
104	Structure determination of contaminant proteins using the MarathonMR procedure. Journal of Structural Biology, 2017, 197, 372-378.	2.8	7
105	Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. Journal of Physical Chemistry B, 2021, 125, 2597-2606.	2.6	7
106	D614G substitution at the hinge region enhances the stability of trimeric SARS-CoV-2 spike protein. Bioinformation, 2021, 17, 439-445.	0.5	7
107	Tolerance to the substitution of buried apolar residues by charged residues in the homologous protein structures. Proteins: Structure, Function and Bioinformatics, 2003, 53, 783-791.	2.6	6
108	Molecular and Structural Basis of Drift in the Functions of Closely-Related Homologous Enzyme Domains: Implications for Function Annotation Based on Homology Searches and Structural Genomics. In Silico Biology, 2009, 9, S41-S55.	0.9	6

#	Article	IF	CITATIONS
109	Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure. Journal of Biomolecular Structure and Dynamics, 2014, 32, 751-758.	3.5	6
110	Ramachandran analysis of conserved glycyl residues in homologous proteins of known structure. Protein Science, 2014, 23, 843-850.	7.6	6
111	Typical and atypical domain combinations in human protein kinases: functions, disease causing mutations and conservation in other primates. RSC Advances, 2015, 5, 25132-25148.	3.6	6
112	Comparison of Leptospira interrogans and Leptospira biflexa genomes: analysis of potential leptospiral–host interactions. Molecular BioSystems, 2017, 13, 883-891.	2.9	6
113	Sendai virus recruits cellular villin to remodel actin cytoskeleton during fusion with hepatocytes. Molecular Biology of the Cell, 2017, 28, 3801-3814.	2.1	6
114	Recognition of a structural domain (RWDBD) in Gcn1 proteins that interacts with the RWD domain containing proteins. Biology Direct, 2017, 12, 12.	4.6	6
115	Seeing but not believing: the structure of glycerol dehydrogenase initially assumed to be the structure of a survival protein from <i>Salmonella typhimurium</i> . Acta Crystallographica Section D: Structural Biology, 2017, 73, 609-617.	2.3	6
116	Identification of a novel epitope in the C terminus of hepatitis C virus-E2 protein that induces potent and cross-reactive neutralizing antibodies. Journal of General Virology, 2017, 98, 962-976.	2.9	6
117	â€ [~] All That Glitters Is Not Gold': High-Resolution Crystal Structures of Ligand-Protein Complexes Need Not Always Represent Confident Binding Poses. International Journal of Molecular Sciences, 2021, 22, 6830.	4.1	6
118	Identification of Local Conformational Similarity in Structurally Variable Regions of Homologous Proteins Using Protein Blocks. PLoS ONE, 2011, 6, e17826.	2.5	6
119	Understanding structural variability in proteins using protein structural networks. Current Research in Structural Biology, 2022, 4, 134-145.	2.2	6
120	Structural and mechanistic insights into human splicing factor SF3b complex derived using an integrated approach guided by the cryo-EM density maps. RNA Biology, 2016, 13, 1025-1040.	3.1	5
121	Use of designed sequences in protein structure recognition. Biology Direct, 2018, 13, 8.	4.6	5
122	Hypervariability of accessible and inaccessible conformational space of proteins. Current Research in Structural Biology, 2021, 3, 229-238.	2.2	5
123	Transient association between proteins elicits alteration of dynamics at sites far away from interfaces. Structure, 2021, 29, 371-384.e3.	3.3	5
124	Influence of solvent molecules on the stereochemical code of glycyl residues in proteins. Proteins: Structure, Function and Bioinformatics, 2002, 49, 326-334.	2.6	4
125	Detection and Characterization of Bacterial Proteinases Using Zymography. Methods in Molecular Biology, 2017, 1626, 103-114.	0.9	4
126	Structural variations within proteins can be as large as variations observed across their homologues. Biochimie, 2019, 167, 162-170.	2.6	4

#	Article	IF	CITATIONS
127	Repurposing Drugs Based on Evolutionary Relationships Between Targets of Approved Drugs and Proteins of Interest. Methods in Molecular Biology, 2019, 1903, 45-59.	0.9	4
128	Data set of intrinsically disordered proteins analysed at a local protein conformation level. Data in Brief, 2020, 29, 105383.	1.0	4
129	How good are comparative models in the understanding of protein dynamics?. Proteins: Structure, Function and Bioinformatics, 2020, 88, 874-888.	2.6	4
130	Rewards of divergence in sequences, 3-D structures and dynamics of yeast and human spliceosome SF3b complexes. Current Research in Structural Biology, 2021, 3, 133-145.	2.2	4
131	Comparative Analysis of Structural and Dynamical Features of Ribosome Upon Association With mRNA Reveals Potential Role of Ribosomal Proteins. Frontiers in Molecular Biosciences, 2021, 8, 654164.	3.5	4
132	Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins. Methods in Molecular Biology, 2016, 1415, 193-209.	0.9	4
133	Recognition of sites of functional specialisation in all known eukaryotic protein kinase families. PLoS Computational Biology, 2018, 14, e1005975.	3.2	4
134	Identification, functional characterization, assembly and structure of ToxIN type III toxin–antitoxin complex from <i>E. coli</i> . Nucleic Acids Research, 2022, 50, 1687-1700.	14.5	4
135	Comparison of side-chain dispersion in protein structures determined by cryo-EM and X-ray crystallography. IUCrJ, 2022, 9, 98-103.	2.2	4
136	Repertoire of Protein Kinases Encoded in the Genome of <i>Takifugu rubripes</i> . Comparative and Functional Genomics, 2012, 2012, 1-12.	2.0	3
137	Hybrid and Rogue Kinases Encoded in the Genomes of Model Eukaryotes. PLoS ONE, 2014, 9, e107956.	2.5	3
138	Computational recognition and analysis of hitherto uncharacterized nucleotide cyclase-like proteins in bacteria. Biology Direct, 2016, 11, 27.	4.6	3
139	Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications. Proteins: Structure, Function and Bioinformatics, 2016, 84, 1190-1202.	2.6	3
140	Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites. Proteins: Structure, Function and Bioinformatics, 2017, 85, 1699-1712.	2.6	3
141	Heterologous Expression, Purification and Characterization of an Oligopeptidase A from the Pathogen Leptospira interrogans. Molecular Biotechnology, 2018, 60, 302-309.	2.4	3
142	Potent HCV NS3 Protease Inhibition by a Water-Soluble Phyllanthin Congener. ACS Omega, 2020, 5, 11553-11562.	3.5	3
143	DSDBASE 2.0: updated version of DiSulphide dataBASE, a database on disulphide bonds in proteins. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	3
144	Recognition of remotely related structural homologues using sequence profiles of aligned homologous protein structures. In Silico Biology, 2004, 4, 445-60.	0.9	3

#	Article	IF	CITATIONS
145	Clustering of multiâ€domain protein sequences. Proteins: Structure, Function and Bioinformatics, 2018, 86, 759-776.	2.6	2
146	Unity and diversity among viral kinases. Gene, 2020, 723, 144134.	2.2	2
147	Manoeuvring protein functions and functional levels by structural excursions. , 2020, , 77-104.		2
148	Signatures of conserved and unique molecular features in Afrotheria. Scientific Reports, 2021, 11, 1011.	3.3	2
149	NOD: a web server to predict New use of Old Drugs to facilitate drug repurposing. Scientific Reports, 2021, 11, 13540.	3.3	2
150	Pseudokinases repurpose flexibility signatures associated with the protein kinase fold for noncatalytic roles. Proteins: Structure, Function and Bioinformatics, 2022, 90, 747-764.	2.6	2
151	Profiles of Natural and Designed Protein-Like Sequences Effectively Bridge Protein Sequence Gaps: Implications in Distant Homology Detection. Methods in Molecular Biology, 2022, 2449, 149-167.	0.9	2
152	How effective is the data on co-occurrence of domains in multi-domain proteins in prediction of protein-protein interactions?. , 2009, , .		1
153	Protein-Protein Interactions in Clathrin Vesicular Assembly: Radial Distribution of Evolutionary Constraints in Interfaces. PLoS ONE, 2012, 7, e31445.	2.5	1
154	Evolutionary and structural analyses of heterodimeric proteins composed of subunits with same fold. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1766-1786.	2.6	1
155	Classification of Protein Kinases Influenced by Conservation of Substrate Binding Residues. Methods in Molecular Biology, 2016, 1415, 301-313.	0.9	1
156	Specialized structural and functional roles of residues selectively conserved in subfamilies of the pleckstrin homology domain family. FEBS Open Bio, 2019, 9, 1848-1859.	2.3	1
157	Artificial protein sequences enable recognition of vicinal and distant protein functional relationships. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1688-1700.	2.6	1
158	Protein Structure, Dynamics and Assembly: Implications for Drug Discovery. , 2021, , 91-122.		1
159	Sequence Divergence and Functional Specializations of the Ancient Spliceosomal SF3b: Implications in Flexibility and Adaptations of the Multi-Protein Complex. Frontiers in Genetics, 2021, 12, 747344.	2.3	1
160	Structural Modes of Stabilization of Permissive Phosphorylation Sites in Protein Kinases: Distinct Strategies in Ser/Thr and Tyr Kinases. Journal of Molecular Biology, 2004, 339, 1025-1025.	4.2	0
161	Evolutionary Dynamics of Protein–Protein Interactions. , 0, , 209-231.		0
162	Analysis on sliding helices and strands in protein structural comparisons: A case study with protein kinases. Journal of Biosciences, 2007, 32, 921-928.	1.1	0

#	Article	IF	CITATIONS
163	Chemical specificity and conformational flexibility in proteinase–inhibitor interaction: Scaffolds for promiscuous binding. Progress in Biophysics and Molecular Biology, 2014, 116, 151-157.	2.9	0
164	Cover Image, Volume 84, Issue 7. Proteins: Structure, Function and Bioinformatics, 2016, 84, C1-C1.	2.6	0
165	Editorial overview: Theory and simulation. Current Opinion in Structural Biology, 2016, 37, iv-v.	5.7	0
166	Design, Synthesis, and Experimental Validation of Peptide Ligands Targeting Mycobacterium tuberculosis σ Factors. Biochemistry, 2017, 56, 2209-2218.	2.5	0
167	Chandrasekharan Ramakrishnan (1939–2019): The student behind the Ramachandran map. Protein Science, 2019, 28, 1920-1922.	7.6	0
168	Master Blaster: an approach to sensitive identification of remotely related proteins. Scientific Reports, 2021, 11, 8746.	3.3	0
169	Targeted Modifications in Adeno-Associated Virus Serotype (AAV)- 8 Capsid Improves Its Hepatic Gene Transfer Efficiency in Vivo. Blood, 2012, 120, 2045-2045.	1.4	0
170	Structural and dynamical aspects of evolutionarily conserved protein–protein complexes. , 2020, , 3-31.		0