
Rafael Gutierrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5538017/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activation of STAT3 Regulates Reactive Astrogliosis and Neuronal Death Induced by AβO Neurotoxicity. International Journal of Molecular Sciences, 2020, 21, 7458.	4.1	23
2	Neuronal Glutamatergic Network Electrically Wired with Silent But Activatable Gap Junctions. Journal of Neuroscience, 2020, 40, 4661-4672.	3.6	7
3	Early Appearance and Spread of Fast Ripples in the Hippocampus in a Model of Cortical Traumatic Brain Injury. Journal of Neuroscience, 2018, 38, 9034-9046.	3.6	15
4	Electrical coupling between hippocampal neurons: contrasting roles of principal cell gap junctions and interneuron gap junctions. Cell and Tissue Research, 2018, 373, 671-691.	2.9	24
5	Target-Dependent Compartmentalization of the Corelease of Glutamate and GABA from the Mossy Fibers. Journal of Neuroscience, 2017, 37, 701-714.	3.6	11
6	Differential frequency-dependent antidromic resonance of the Schaffer collaterals and mossy fibers. Brain Structure and Function, 2016, 221, 1793-1807.	2.3	3
7	The plastic neurotransmitter phenotype of the hippocampal granule cells and of the moss in their messy fibers. Journal of Chemical Neuroanatomy, 2016, 73, 9-20.	2.1	4
8	Entorhinal cortex lesions result in adenosine-sensitive high frequency oscillations in the hippocampus. Experimental Neurology, 2015, 271, 319-328.	4.1	9
9	Cocultures of GFP ⁺ â€granule cells with GFP ^{â^'} â€pyramidal cells and interneurons for the study of mossy fiber neurotransmission with paired recordings. Hippocampus, 2013, 23, 247-252.	1.9	4
10	Mixed neurotransmission in the hippocampal mossy fibers. Frontiers in Cellular Neuroscience, 2013, 7, 210.	3.7	28
11	Granule cells born in the adult rat hippocampus can regulate the expression of GABAergic markers. Experimental Neurology, 2012, 237, 134-141.	4.1	8
12	Mixed Electrical–Chemical Synapses in Adult Rat Hippocampus are Primarily Glutamatergic and Coupled by Connexin-36. Frontiers in Neuroanatomy, 2012, 6, 13.	1.7	35
13	Mixed electrical–chemical transmission between hippocampal mossy fibers and pyramidal cells. European Journal of Neuroscience, 2012, 35, 76-82.	2.6	35
14	Dissociation of CA3 pyramidal cells with attached, functional, identified mossy fiber and interneuronal boutons for studying glutamatergic and GABAergic synaptic transmission. Journal of Neuroscience Methods, 2012, 208, 155-160.	2.5	6
15	Coâ€release of glutamate and GABA from single, identified mossy fibre giant boutons. Journal of Physiology, 2012, 590, 4789-4800.	2.9	34
16	Excitation-inhibition balance in the CA3 network - neuronal specificity and activity-dependent plasticity. European Journal of Neuroscience, 2011, 33, 1771-1785.	2.6	14
17	Synaptic and Vesicular Coexistence of VGLUT and VGAT in Selected Excitatory and Inhibitory Synapses. Journal of Neuroscience, 2010, 30, 7634-7645.	3.6	142
18	GABA Actions in Hippocampal Area CA3 During Postnatal Development: Differential Shift From Depolarizing to Hyperpolarizing in Somatic and Dendritic Compartments. Journal of Neurophysiology, 2008, 99, 1523-1534.	1.8	51

RAFAEL GUTIERREZ

#	Article	IF	CITATIONS
19	Â/Â Oscillatory Activity in the CA3 Hippocampal Area is Depressed by Aberrant GABAergic Transmission from the Dentate Gyrus after Seizures. Journal of Neuroscience, 2007, 27, 251-259.	3.6	52
20	Pre-synaptic histamine H3 receptors regulate glutamate, but not GABA release in rat thalamus. Neuropharmacology, 2007, 52, 527-535.	4.1	53
21	Mossy fiber synaptic transmission: communication from the dentate gyrus to area CA3. Progress in Brain Research, 2007, 163, 109-805.	1.4	47
22	On Cotransmission & amp; Neurotransmitter Phenotype Plasticity. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2007, 7, 138-146.	3.4	40
23	Co-Existence of GABA and Glu in the Hippocampal Granule Cells: Implications for Epilepsy. Current Topics in Medicinal Chemistry, 2006, 6, 975-978.	2.1	34
24	The GABAergic projection of the dentate gyrus to hippocampal area CA3 of the rat: pre- and postsynaptic actions after seizures. Journal of Physiology, 2005, 567, 939-949.	2.9	43
25	Tonic modulation of inhibition by dopamine D4 receptors in the rat hippocampus. Hippocampus, 2005, 15, 254-259.	1.9	13
26	Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures. Hippocampus, 2005, 15, 281-284.	1.9	13
27	Kindling the GABAergic Phenotype of the Glutamatergic Granule Cells. , 2005, , 71-79.		0
28	Programmed and Induced Phenotype of the Hippocampal Granule Cells. Journal of Neuroscience, 2005, 25, 6939-6946.	3.6	83
29	The dual glutamatergic–GABAergic phenotype of hippocampal granule cells. Trends in Neurosciences, 2005, 28, 297-303.	8.6	117
30	Neuraminidase activity in different regions of the seizing epileptic and non-epileptic brain. Brain Research, 2003, 964, 211-217.	2.2	21
31	A novel class of peptide found in scorpion venom with neurodepressant effects in peripheral and central nervous system of the rat. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2003, 1649, 58-67.	2.3	18
32	Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neuroscience Letters, 2003, 353, 69-69.	2.1	1
33	Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neuroscience Letters, 2003, 353, 69-71.	2.1	30
34	The GABAergic phenotype of the "glutamatergic―granule cells of the dentate gyrus. Progress in Neurobiology, 2003, 71, 337-358.	5.7	81
35	Plasticity of the GABAergic Phenotype of the "Glutamatergic―Granule Cells of the Rat Dentate Gyrus. Journal of Neuroscience, 2003, 23, 5594-5598.	3.6	119
36	Activity-Dependent Induction of Multitransmitter Signaling Onto Pyramidal Cells and Interneurons of Hippocampal Area CA3. Journal of Neurophysiology, 2003, 89, 3155-3167.	1.8	45

RAFAEL GUTIERREZ

#	Article	IF	CITATIONS
37	Presence of claudins mRNA in the brain. Molecular Brain Research, 2002, 104, 250-254.	2.3	24
38	Activity-Dependent Expression of Simultaneous Glutamatergic and GABAergic Neurotransmission From the Mossy Fibers In Vitro. Journal of Neurophysiology, 2002, 87, 2562-2570.	1.8	86
39	Vesicular GABA transporter mRNA expression in the dentate gyrus and in mossy fiber synaptosomes. Molecular Brain Research, 2001, 93, 209-214.	2.3	65
40	Kindling induces transient fast inhibition in the dentate gyrus-CA3 projection. European Journal of Neuroscience, 2001, 13, 1371-1379.	2.6	84
41	Activity-dependent expression of GAD67 in the granule cells of the rat hippocampus. Brain Research, 2001, 917, 139-146.	2.2	91
42	Seizures Induce Simultaneous GABAergic and Glutamatergic Transmission in the Dentate Gyrus-CA3 System. Journal of Neurophysiology, 2000, 84, 3088-3090.	1.8	91
43	Expression of connexin genes in hippocampus of kainate-treated and kindled rats under conditions of experimental epilepsy. Molecular Brain Research, 2000, 83, 44-51.	2.3	98
44	Synaptic reorganization in explanted cultures of rat hippocampus. Brain Research, 1999, 815, 304-316.	2.2	95
45	Epileptiform activity induced by low Mg2+ in cultured rat hippocampal slices. Brain Research, 1999, 815, 294-303.	2.2	38