List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553743/publications.pdf Version: 2024-02-01

	34076	23514
13,532	52	111
citations	h-index	g-index
153	153	19961
docs citations	times ranked	citing authors
	13,532 citations 153 docs citations	13,53252citationsh-index153153docs citationstimes ranked

#	Article	IF	CITATIONS
1	Diet dependent impact of benzoate on diabetes and obesity in mice. Biochimie, 2022, 194, 35-42.	1.3	2
2	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	15.2	102
3	Genetic Architecture of Untargeted Lipidomics in Cardiometabolic-Disease Patients Combines Strong Polygenic Control and Pleiotropy. Metabolites, 2022, 12, 596.	1.3	1
4	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	6.1	58
5	Dominant gut Prevotella copri in gastrectomised non-obese diabetic Goto–Kakizaki rats improves glucose homeostasis through enhanced FXR signalling. Diabetologia, 2020, 63, 1223-1235.	2.9	37
6	The Natural Metabolite 4-Cresol Improves Glucose Homeostasis and Enhances β-Cell Function. Cell Reports, 2020, 30, 2306-2320.e5.	2.9	35
7	Plasma and urine metabolomic analyses in aortic valve stenosis reveal shared and biofluid-specific changes in metabolite levels. PLoS ONE, 2020, 15, e0242019.	1.1	6
8	Title is missing!. , 2020, 15, e0242019.		0
9	Title is missing!. , 2020, 15, e0242019.		Ο
10	Title is missing!. , 2020, 15, e0242019.		0
11	Title is missing!. , 2020, 15, e0242019.		0
12	Title is missing!. , 2020, 15, e0242019.		0
13	Title is missing!. , 2020, 15, e0242019.		Ο
14	Conserved properties of genetic architecture of renal and fat transcriptomes in rat models of insulin resistance. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	6
15	Systems Genetics of Hepatic Metabolome Reveals Octopamine as a Target for Non-Alcoholic Fatty Liver Disease Treatment. Scientific Reports, 2019, 9, 3656.	1.6	11
16	Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection. Journal of the American College of Cardiology, 2019, 73, 58-66.	1.2	147
17	pJRES Binning Algorithm (JBA): a new method to facilitate the recovery of metabolic information from pJRES 1H NMR spectra. Bioinformatics, 2019, 35, 1916-1922.	1.8	12
18	Untargeted Mass Spectrometry Lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids in Health and Disease, 2019, 18, 38.	1.2	21

#	Article	IF	CITATIONS
19	MWASTools: an R/bioconductor package for metabolome-wide association studies. Bioinformatics, 2018, 34, 890-892.	1.8	18
20	Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome, 2018, 6, 73.	4.9	127
21	Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics, 2018, 110, 98-111.	1.3	22
22	Integration of the human exposome with the human genome to advance medicine. Biochimie, 2018, 152, 155-158.	1.3	36
23	Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cellular and Molecular Life Sciences, 2018, 75, 3977-3990.	2.4	127
24	MetaboSignal: a network-based approach for topological analysis of metabotype regulation <i>via</i> metabolic and signaling pathways. Bioinformatics, 2017, 33, 773-775.	1.8	20
25	Biological roles of microRNAs in the control of insulin secretion and action. Physiological Genomics, 2017, 49, 1-10.	1.0	33
26	Loss of Cardioprotective Effects at the <i>ADAMTS7</i> Locus as a Result of Gene-Smoking Interactions. Circulation, 2017, 135, 2336-2353.	1.6	51
27	Genomic regulation of type 2 diabetes endophenotypes: Contribution from genetic studies in the Goto-Kakizaki rat. Biochimie, 2017, 143, 56-65.	1.3	9
28	<i>J</i> -Resolved ¹ H NMR 1D-Projections for Large-Scale Metabolic Phenotyping Studies: Application to Blood Plasma Analysis. Analytical Chemistry, 2017, 89, 11405-11412.	3.2	18
29	Microbial-Host Co-metabolites Are Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and Impaired Glucose Tolerance. Cell Reports, 2017, 20, 136-148.	2.9	78
30	A multiplexed targeted assay for high-throughput quantitative analysis of serum methylamines by ultra performance liquid chromatography coupled to high resolution mass spectrometry. Archives of Biochemistry and Biophysics, 2016, 597, 12-20.	1.4	14
31	Topological analysis of metabolic networks integrating co-segregating transcriptomes and metabolomes in type 2 diabetic rat congenic series. Genome Medicine, 2016, 8, 101.	3.6	19
32	Caffeine Impact on Metabolic Syndrome Components Is Modulated by a CYP1A2 Variant. Annals of Nutrition and Metabolism, 2016, 68, 1-11.	1.0	16
33	Transcriptome Profiling in Rat Inbred Strains and Experimental Cross Reveals Discrepant Genetic Architecture of Genome-Wide Gene Expression. G3: Genes, Genomes, Genetics, 2016, 6, 3671-3683.	0.8	9
34	No Association of Coronary Artery Disease with X-Chromosomal Variants in Comprehensive International Meta-Analysis. Scientific Reports, 2016, 6, 35278.	1.6	25
35	Application of quantitative metabolomics in systems genetics in rodent models of complex phenotypes. Archives of Biochemistry and Biophysics, 2016, 589, 158-167.	1.4	12
36	Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins. Scientific Reports, 2015, 5, 14410.	1.6	75

#	Article	IF	CITATIONS
37	ANKS3 Co-Localises with ANKS6 in Mouse Renal Cilia and Is Associated with Vasopressin Signaling and Apoptosis In Vivo in Mice. PLoS ONE, 2015, 10, e0136781.	1.1	10
38	Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine. Aids, 2015, 29, 443-452.	1.0	60
39	The SAM domain of ANKS6 has different interacting partners and mutations can induce different cystic phenotypes. Kidney International, 2015, 88, 299-310.	2.6	19
40	mQTL.NMR: An Integrated Suite for Genetic Mapping of Quantitative Variations of ¹ H NMR-Based Metabolic Profiles. Analytical Chemistry, 2015, 87, 4377-4384.	3.2	30
41	Wholeâ€genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature, 2015, 526, 112-117.	13.7	483
42	A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 2015, 47, 1121-1130.	9.4	2,054
43	Circulating lipid levels and risk of coronary artery disease in a large group of patients undergoing coronary angiography. Journal of Thrombosis and Thrombolysis, 2015, 39, 15-22.	1.0	13
44	Association of coronary artery disease and chronic kidney disease in Lebanese population. International Journal of Clinical and Experimental Medicine, 2015, 8, 15866-77.	1.3	1
45	Association of hypertension with coronary artery disease onset in the Lebanese population. SpringerPlus, 2014, 3, 533.	1.2	8
46	Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. Physiological Genomics, 2014, 46, 418-428.	1.0	18
47	T2DM GWAS in the Lebanese population confirms the role of TCF7L2 and CDKAL1 in disease susceptibility. Scientific Reports, 2014, 4, 7351.	1.6	25
48	Regenerating 1 and 3b Gene Expression in the Pancreas of Type 2 Diabetic Goto-Kakizaki (GK) Rats. PLoS ONE, 2014, 9, e90045.	1.1	17
49	Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men. PLoS ONE, 2014, 9, e91375.	1.1	21
50	Genetic Control of Differential Acetylation in Diabetic Rats. PLoS ONE, 2014, 9, e94555.	1.1	7
51	Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genetics, 2013, 45, 25-33.	9.4	1,439
52	Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat. Cell, 2013, 154, 691-703.	13.5	154
53	Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nature Genetics, 2013, 45, 767-775.	9.4	176
54	Genome-Wide Diversity in the Levant Reveals Recent Structuring by Culture. PLoS Genetics, 2013, 9, e1003316.	1.5	77

#	Article	IF	CITATIONS
55	Nutrigenomics of High Fat Diet Induced Obesity in Mice Suggests Relationships between Susceptibility to Fatty Liver Disease and the Proteasome. PLoS ONE, 2013, 8, e82825.	1.1	39
56	Genetic and environmental influences on total plasma homocysteine and its role in coronary artery disease risk. Atherosclerosis, 2012, 222, 180-186.	0.4	27
57	Untargeted Metabolome Quantitative Trait Locus Mapping Associates Variation in Urine Glycerate to Mutant Glycerate Kinase. Journal of Proteome Research, 2012, 11, 631-642.	1.8	25
58	Genome-Wide Association Study in a Lebanese Cohort Confirms PHACTR1 as a Major Determinant of Coronary Artery Stenosis. PLoS ONE, 2012, 7, e38663.	1.1	52
59	Mapping Metabolomic Quantitative Trait Loci (mQTL): A Link Between Metabolome-Wide Association Studies and Systems Biology. , 2012, , 233-254.		1
60	Broad-Ranging Natural Metabotype Variation Drives Physiological Plasticity in Healthy Control Inbred Rat Strains. Journal of Proteome Research, 2011, 10, 1675-1689.	1.8	19
61	Large Scale Association Analysis Identifies Three Susceptibility Loci for Coronary Artery Disease. PLoS ONE, 2011, 6, e29427.	1.1	75
62	Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia, 2010, 53, 1099-1109.	2.9	261
63	Chromosomal mapping of pancreatic islet morphological features and regulatory hormones in the spontaneously diabetic (Type 2) Goto-Kakizaki rat. Mammalian Genome, 2010, 21, 499-508.	1.0	8
64	Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles. Diabetes, 2010, 59, 1192-1201.	0.3	63
65	A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock. Genome Research, 2009, 19, 150-158.	2.4	72
66	Comparative analysis of methods for gene transcription profiling data derived from different microarray technologies in rat and mouse models of diabetes. BMC Genomics, 2009, 10, 63.	1.2	16
67	Functional annotations of diabetes nephropathy susceptibility loci through analysis of genome-wide renal gene expression in rat models of diabetes mellitus. BMC Medical Genomics, 2009, 2, 41.	0.7	11
68	MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes. BMC Medical Genomics, 2009, 2, 54.	0.7	105
69	Pancreatic Ectopic Fat Is Characterized by Adipocyte Infiltration and Altered Lipid Composition. Obesity, 2008, 16, 522-530.	1.5	169
70	SNP and haplotype mapping for genetic analysis in the rat. Nature Genetics, 2008, 40, 560-566.	9.4	172
71	Progress and prospects in rat genetics: a community view. Nature Genetics, 2008, 40, 516-522.	9.4	265
72	G/T Substitution in Intron 1 of the UNC13B Gene Is Associated With Increased Risk of Nephropathy in Patients With Type 1 Diabetes. Diabetes, 2008, 57, 2843-2850.	0.3	39

#	Article	IF	CITATIONS
73	Genomic organization and mutation screening of the human ortholog of Pkdr1 associated with polycystic kidney disease in the rat. European Journal of Medical Genetics, 2008, 51, 325-331.	0.7	3
74	Pathophysiological, Genetic and Gene Expression Features of a Novel Rodent Model of the Cardio-Metabolic Syndrome. PLoS ONE, 2008, 3, e2962.	1.1	24
75	Phylometabonomic Patterns of Adaptation to High Fat Diet Feeding in Inbred Mice. PLoS ONE, 2008, 3, e1668.	1.1	91
76	Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14412-14417.	3.3	346
77	European rational approach for the genetics of diabetic complications EURAGEDIC: patient populations and strategy. Nephrology Dialysis Transplantation, 2007, 23, 161-168.	0.4	30
78	Association between Angiotensin-Converting Enzyme Gene Polymorphisms and Diabetic Nephropathy: Case-Control, Haplotype, and Family-Based Study in Three European Populations. Journal of the American Society of Nephrology: JASN, 2007, 18, 1284-1291.	3.0	64
79	Genetic association analysis of inositol polyphosphate phosphatase-like 1 (INPPL1, SHIP2) variants with essential hypertension. Journal of Medical Genetics, 2007, 44, 603-605.	1.5	17
80	Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nature Genetics, 2007, 39, 666-672.	9.4	140
81	Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice. Diabetologia, 2007, 50, 1867-1879.	2.9	108
82	Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12511-12516.	3.3	948
83	Glycomics investigation into insulin action. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 652-668.	1.1	17
84	Genomic organization of the rat Clock gene and sequence analysis in inbred rat strains. Genomics, 2006, 87, 208-217.	1.3	3
85	Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genetics, 2006, 38, 879-887.	9.4	508
86	A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mammalian Genome, 2006, 17, 129-146.	1.0	99
87	Mapping diabetes QTL in an intercross derived from a congenic strain of the Brown Norway and Goto-Kakizaki rats. Mammalian Genome, 2006, 17, 538-547.	1.0	14
88	Diabetes quantitative trait locus research: from physiology to genetics and back. Diabetologia, 2006, 49, 431-433.	2.9	3
89	Genetic control of plasma lipid levels in a cross derived from normoglycaemic Brown Norway and spontaneously diabetic Goto–Kakizaki rats. Diabetologia, 2006, 49, 2679-2688.	2.9	18
90	Analysis of 14 Candidate Genes for Diabetic Nephropathy on Chromosome 3q in European Populations: Strongest Evidence for Association With a Variant in the Promoter Region of the Adiponectin Gene. Diabetes, 2006, 55, 3166-3174.	0.3	74

#	Article	IF	CITATIONS
91	Genetic and Environmental Effects on Complex Traits in Mice. Genetics, 2006, 174, 959-984.	1.2	161
92	Medical Genetics: Revenge of the thrift. Heredity, 2005, 95, 337-338.	1.2	0
93	The genes and gene organization of the Ly49 region of the rat natural killer cell gene complex. European Journal of Immunology, 2005, 35, 261-272.	1.6	50
94	The rat as a model physiological system. , 2005, , .		3
95	Characteristics of the aortic elastic network and related phenotypes in seven inbred rat strains. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H769-H777.	1.5	36
96	Chromosomal Mapping of Quantitative Trait Loci Controlling Elastin Content in Rat Aorta. Hypertension, 2005, 45, 460-466.	1.3	18
97	Missense Mutation in Sterile α Motif of Novel Protein SamCystin is Associated with Polycystic Kidney Disease in (cy/+) Rat. Journal of the American Society of Nephrology: JASN, 2005, 16, 3517-3526.	3.0	78
98	Statistical Total Correlation Spectroscopy:Â An Exploratory Approach for Latent Biomarker Identification from Metabolic1H NMR Data Sets. Analytical Chemistry, 2005, 77, 1282-1289.	3.2	833
99	Quantitative trait locus dissection in congenic strains of the Goto-Kakizaki rat identifies a region conserved with diabetes loci in human chromosome 1q. Physiological Genomics, 2004, 19, 1-10.	1.0	22
100	Studies of Congenic Lines in the Brown Norway Rat Model of Th2-Mediated Immunopathological Disorders Show That the Aurothiopropanol Sulfonate-Induced Immunological Disorder (<i>Aiid3</i>) Locus on Chromosome 9 Plays a Major Role Compared to <i>Aiid2</i> on Chromosome 10. Journal of Immunology, 2004, 172, 6354-6361.	0.4	14
101	Transforming Growth Factor-Â1 Production Is Correlated With Genetically Determined ACE Expression in Congenic Rats: A Possible Link Between ACE Genotype and Diabetic Nephropathy. Diabetes, 2004, 53, 1111-1118.	0.3	19
102	Polymorphisms in Type II SH2 Domain-Containing Inositol 5-Phosphatase (INPPL1, SHIP2) Are Associated With Physiological Abnormalities of the Metabolic Syndrome. Diabetes, 2004, 53, 1900-1904.	0.3	91
103	Integration of the Rat Recombination and EST Maps in the Rat Genomic Sequence and Comparative Mapping Analysis With the Mouse Genome. Genome Research, 2004, 14, 758-765.	2.4	22
104	Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovascular Research, 2004, 61, 288-296.	1.8	112
105	Chromosomal Mapping of Genetic Loci Controlling Absence Epilepsy Phenotypes in the WAG/Rij Rat. Epilepsia, 2004, 45, 908-915.	2.6	49
106	Polygenic Control of Idiopathic Generalized Epilepsy Phenotypes in the Genetic Absence Rats from Strasbourg (GAERS). Epilepsia, 2004, 45, 301-308.	2.6	56
107	Enhanced insulin secretion and cholesterol metabolism in congenic strains of the spontaneously diabetic (Type 2) Goto Kakizaki rat are controlled by independent genetic loci in rat chromosome 8. Diabetologia, 2004, 47, 1096-106.	2.9	28
108	Gender differences in hypertrophy, insulin resistance and ischemic injury in the aging type 2Bdiabetic rat heart. Journal of Molecular and Cellular Cardiology, 2004, 37, 547-555.	0.9	72

#	Article	IF	CITATIONS
109	Marker-assisted congenic screening (MACS): A database tool for the efficient production and characterization of congenic lines. Mammalian Genome, 2003, 14, 350-356.	1.0	24
110	Genetics and functional genomics of type 2 diabetes mellitus. Genome Biology, 2003, 4, 241.	13.9	8
111	Thymectomy and Radiation-Induced Type 1 Diabetes in Nonlymphopenic BB Rats. Diabetes, 2002, 51, 2975-2981.	0.3	23
112	Characterization of a major modifier locus for polycystic kidney disease (Modpkdr1) in the Han:SPRD(cy/+) rat in a region conserved with a mouse modifier locus for Alport syndrome. Human Molecular Genetics, 2002, 11, 2165-2173.	1.4	23
113	The Gene INPPL1, Encoding the Lipid Phosphatase SHIP2, Is a Candidate for Type 2 Diabetes In Rat and Man. Diabetes, 2002, 51, 2012-2017.	0.3	122
114	Localization, cDNA sequence and genomic organization of the rat seipin gene <i>(Bscl2)</i> and sequence analysis in inbred rat models of Type 2 diabetes mellitus. Cytogenetic and Genome Research, 2002, 98, 71-74.	0.6	2
115	Approaches to the Analysis of Complex Quantitative Phenotypes and Marker Map Construction Based on the Analysis of Rat Models of Hypertension. , 2002, 195, 225-251.		3
116	A High-Resolution Consensus Linkage Map of the Rat, Integrating Radiation Hybrid and Genetic Maps. Genomics, 2001, 75, 57-69.	1.3	34
117	A Dominant Modifier of Transgene Methylation Is Mapped by QTL Analysis to Mouse Chromosome 13. Genome Research, 2001, 11, 382-388.	2.4	9
118	Genetic Dissection of Region Around the Sa Gene on Rat Chromosome 1. Hypertension, 2001, 38, 216-221.	1.3	57
119	Genetic Influences on the End-Stage Effector Phase of Arthritis. Journal of Experimental Medicine, 2001, 194, 321-330.	4.2	134
120	Applicability of a "Speed―Congenic Strategy to Dissect Blood Pressure Quantitative Trait Loci on Rat Chromosome 2. Hypertension, 2000, 35, 179-187.	1.3	76
121	Rat chromosome 9 bears a major susceptibility locus for IgE response. European Journal of Immunology, 2000, 30, 1698-1705.	1.6	20
122	Detailed Comparative Gene Map of Rat Chromosome 1 with Mouse and Human Genomes and Physical Mapping of an Evolutionary Chromosomal Breakpoint. Genomics, 2000, 64, 32-43.	1.3	17
123	Complete genome searches for quantitative trait loci controlling blood pressure and related traits in four segregating populations derived from Dahl hypertensive rats. Mammalian Genome, 1999, 10, 259-265.	1.0	56
124	Linkage and physical mapping of rat microsatellites derived from minisatellite loci. Mammalian Genome, 1999, 10, 405-409.	1.0	11
125	A gene map of the rat derived from linkage analysis and related regions in the mouse and human genomes. Mammalian Genome, 1999, 10, 675-686.	1.0	26
126	Report on rat chromosome 4. Journal of Experimental Animal Science, 1999, 40, 37-46.	0.5	0

#	Article	IF	CITATIONS
127	Localization of tub and uncoupling proteins (Ucp) 2 and 3 to a region of rat Chromosome 1 linked to glucose intolerance and adiposity in the Goto-Kakizaki (GK) Type 2 diabetic rat. Mammalian Genome, 1998, 9, 910-912.	1.0	19
128	Construction and Characterization of a 10-fold Genome Equivalent Rat P1-Derived Artificial Chromosome Library. Genomics, 1998, 50, 306-316.	1.3	78
129	Analysis of Distribution in the Human, Pig, and Rat Genomes Points toward a General Subtelomeric Origin of Minisatellite Structures. Genomics, 1998, 52, 62-71.	1.3	39
130	Successful Isolation of a Rat Chromosome 1 Blood Pressure Quantitative Trait Locus in Reciprocal Congenic Strains. Hypertension, 1998, 32, 639-646.	1.3	55
131	A Gene-Based Genetic Linkage and Comparative Map of the Rat X Chromosome. Genomics, 1997, 40, 253-261.	1.3	47
132	A Linkage Map of the Rat Genome Derived from Three F ₂ Crosses. Genome Research, 1997, 7, 434-440.	2.4	158
133	Sensitivity to cerebral ischaemic insult in a rat model of stroke is determined by a single genetic locus. Nature Genetics, 1997, 16, 364-367.	9.4	204
134	Integrated genetic mapping of 64 rat microsatellite markers from different sources. Mammalian Genome, 1997, 8, 282-283.	1.0	9
135	A pharmacogenetic approach to blood pressure in Lyon hypertensive rats. A chromosome 2 locus influences the response to a calcium antagonist Journal of Clinical Investigation, 1997, 100, 2000-2006.	3.9	38
136	Serum IgE Concentration and Other Immune Manifestations of Treatment with Gold Salts Are Linked to the MHC and IL4 Regions in the Rat. Genomics, 1996, 31, 111-114.	1.3	45
137	A genetic linkage map of the rat derived from recombinant inbred strains. Mammalian Genome, 1996, 7, 117-127.	1.0	108
138	Chromosomal mapping of genetic loci associated with non-insulin dependent diabetes in the GK rat. Nature Genetics, 1996, 12, 38-43.	9.4	296
139	A major quantitative trait locus influences hyperactivity in the WKHA rat. Nature Genetics, 1996, 14, 471-473.	9.4	95
140	Analysis of Quantitative Trait Loci for Blood Pressure on Rat Chromosomes 2 and 13. Hypertension, 1996, 28, 1118-1122.	1.3	59
141	Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10 Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8778-8782.	3.3	74
142	Two polymorphic dinucleotide repeats in the rat dystrophin gene, including the conserved 3? UTR repeat. Mammalian Genome, 1995, 6, 668-669.	1.0	3
143	Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains Journal of Clinical Investigation, 1995, 96, 1973-1978.	3.9	146
144	Higher maternal than paternal inheritance of diabetes in GK rats. Diabetes, 1994, 43, 220-224.	0.3	15

#	Article	IF	CITATIONS
145	Inheritance of diabetes mellitus as consequence of gestational hyperglycemia in rats. Diabetes, 1990, 39, 734-739.	0.3	37