
## Daniele Ghezzi ScD

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5537009/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic diagnosis of Mendelian disorders via RNA sequencing. Nature Communications, 2017, 8, 15824.                                                                                                                 | 12.8 | 432       |
| 2  | SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nature Genetics, 2009, 41, 654-656.                                                          | 21.4 | 233       |
| 3  | Severe X-Linked Mitochondrial Encephalomyopathy Associated with a Mutation in Apoptosis-Inducing<br>Factor. American Journal of Human Genetics, 2010, 86, 639-649.                                                  | 6.2  | 199       |
| 4  | Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians.<br>European Journal of Human Genetics, 2005, 13, 748-752.                                                        | 2.8  | 197       |
| 5  | Leukoencephalopathy with thalamus and brainstem involvement and high lactate â€~LTBL' caused by EARS2 mutations. Brain, 2012, 135, 1387-1394.                                                                       | 7.6  | 187       |
| 6  | Novel (ovario) leukodystrophy related to <i>AARS2</i> mutations. Neurology, 2014, 82, 2063-2071.                                                                                                                    | 1.1  | 172       |
| 7  | Mutations of the Mitochondrial-tRNA Modifier MTO1 Cause Hypertrophic Cardiomyopathy and Lactic<br>Acidosis. American Journal of Human Genetics, 2012, 90, 1079-1087.                                                | 6.2  | 164       |
| 8  | Mutations in TTC19 cause mitochondrial complex III deficiency and neurological impairment in humans and flies. Nature Genetics, 2011, 43, 259-263.                                                                  | 21.4 | 148       |
| 9  | Mutations in FBXL4, Encoding a Mitochondrial Protein, Cause Early-Onset Mitochondrial<br>Encephalomyopathy. American Journal of Human Genetics, 2013, 93, 482-495.                                                  | 6.2  | 138       |
| 10 | Cowchock Syndrome Is Associated with a Mutation in Apoptosis-Inducing Factor. American Journal of<br>Human Genetics, 2012, 91, 1095-1102.                                                                           | 6.2  | 134       |
| 11 | Mutations in GTPBP3 Cause a Mitochondrial Translation Defect Associated with Hypertrophic<br>Cardiomyopathy, Lactic Acidosis, and Encephalopathy. American Journal of Human Genetics, 2014, 95,<br>708-720.         | 6.2  | 123       |
| 12 | Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase Cause Multiple Acyl-CoA<br>Dehydrogenase and Combined Respiratory-Chain Deficiency. American Journal of Human Genetics, 2016,<br>98, 1130-1145. | 6.2  | 118       |
| 13 | The Mitochondrial Aminoacyl tRNA Synthetases: Genes and Syndromes. International Journal of Cell<br>Biology, 2014, 2014, 1-11.                                                                                      | 2.5  | 117       |
| 14 | Assembly Factors of Human Mitochondrial Respiratory Chain Complexes: Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, 2012, 748, 65-106.                                              | 1.6  | 116       |
| 15 | FASTKD2 Nonsense Mutation in an Infantile Mitochondrial Encephalomyopathy Associated with Cytochrome C Oxidase Deficiency. American Journal of Human Genetics, 2008, 83, 415-423.                                   | 6.2  | 107       |
| 16 | RNASEH1 Mutations Impair mtDNA Replication and Cause Adult-Onset Mitochondrial Encephalomyopathy. American Journal of Human Genetics, 2015, 97, 186-193.                                                            | 6.2  | 91        |
| 17 | Disease-Causing SDHAF1 Mutations Impair Transfer of Fe-S Clusters to SDHB. Cell Metabolism, 2016, 23, 292-302.                                                                                                      | 16.2 | 89        |
| 18 | Impaired complex I repair causes recessive Leber's hereditary optic neuropathy. Journal of Clinical<br>Investigation, 2021, 131, .                                                                                  | 8.2  | 89        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies.<br>Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1326-1335.                                                                                            | 1.0 | 87        |
| 20 | <i>VARS2</i> and <i>TARS2</i> Mutations in Patients with Mitochondrial Encephalomyopathies. Human<br>Mutation, 2014, 35, 983-989.                                                                                                                           | 2.5 | 86        |
| 21 | COQ4 Mutations Cause a Broad Spectrum of Mitochondrial Disorders Associated with CoQ10 Deficiency. American Journal of Human Genetics, 2015, 96, 309-317.                                                                                                   | 6.2 | 86        |
| 22 | Clinical implementation of RNA sequencing for Mendelian disease diagnostics. Genome Medicine, 2022, 14, 38.                                                                                                                                                 | 8.2 | 85        |
| 23 | Mitochondrial dysfunction in Parkinson disease: evidence in mutant PARK2 fibroblasts. Frontiers in<br>Genetics, 2015, 6, 78.                                                                                                                                | 2.3 | 77        |
| 24 | Loss of apoptosis-inducing factor critically affects MIA40 function. Cell Death and Disease, 2015, 6, e1814-e1814.                                                                                                                                          | 6.3 | 77        |
| 25 | Myoclonus–dystonia syndrome: Clinical presentation, disease course, and genetic features in 11<br>families. Movement Disorders, 2008, 23, 28-34.                                                                                                            | 3.9 | 75        |
| 26 | Human diseases associated with defects in assembly of OXPHOS complexes. Essays in Biochemistry, 2018, 62, 271-286.                                                                                                                                          | 4.7 | 75        |
| 27 | PINK1heterozygous rare variants: prevalence, significance and phenotypic spectrum. Human Mutation, 2008, 29, 565-565.                                                                                                                                       | 2.5 | 74        |
| 28 | Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence. Human Molecular Genetics, 2009, 18, 1058-1064.                                                                                                   | 2.9 | 70        |
| 29 | Sym1, the yeast ortholog of the MPV17 human disease protein, is a stress-induced bioenergetic and morphogenetic mitochondrial modulator. Human Molecular Genetics, 2010, 19, 1098-1107.                                                                     | 2.9 | 69        |
| 30 | <i>MTO1</i> Mutations are Associated with Hypertrophic Cardiomyopathy and Lactic Acidosis and Cause Respiratory Chain Deficiency in Humans and Yeast. Human Mutation, 2013, 34, 1501-1509.                                                                  | 2.5 | 67        |
| 31 | Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with<br>Cytochrome c Oxidase Deficiency. American Journal of Human Genetics, 2014, 95, 315-325.                                                                 | 6.2 | 64        |
| 32 | Biallelic Mutations in <i>DNM1L</i> are Associated with a Slowly Progressive Infantile<br>Encephalopathy. Human Mutation, 2016, 37, 898-903.                                                                                                                | 2.5 | 64        |
| 33 | Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective?. Orphanet Journal of Rare Diseases, 2018, 13, 120.                                                                                | 2.7 | 61        |
| 34 | A Homozygous Mutation in <i><scp>LYRM</scp>7/<scp>MZM</scp>1<scp>L</scp></i> Associated with<br>Early Onset Encephalopathy, Lactic Acidosis, and Severe Reduction of Mitochondrial<br>Complex <scp>III</scp> Activity. Human Mutation, 2013, 34, 1619-1622. | 2.5 | 60        |
| 35 | SURF1 deficiency causes demyelinating Charcot-Marie-Tooth disease. Neurology, 2013, 81, 1523-1530.                                                                                                                                                          | 1.1 | 53        |
| 36 | <i>LYRM7</i> mutations cause a multifocal cavitating leukoencephalopathy with distinct MRI appearance. Brain, 2016, 139, 782-794.                                                                                                                           | 7.6 | 51        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A novel AIFM1 mutation expands the phenotype to an infantile motor neuron disease. European Journal of Human Genetics, 2016, 24, 463-466.                                                                                                       | 2.8 | 51        |
| 38 | Cavitating leukoencephalopathy with multiple mitochondrial dysfunction syndrome and NFU1 mutations. Frontiers in Genetics, 2014, 5, 412.                                                                                                        | 2.3 | 49        |
| 39 | A slowly progressive mitochondrial encephalomyopathy widens the spectrum of <i>AIFM1</i> disorders. Neurology, 2015, 84, 2193-2195.                                                                                                             | 1.1 | 47        |
| 40 | POLG1 in idiopathic Parkinson disease. Neurology, 2006, 67, 1698-1700.                                                                                                                                                                          | 1.1 | 46        |
| 41 | Recessive mutations in <i>MSTO1</i> cause mitochondrial dynamics impairment, leading to myopathy and ataxia. Human Mutation, 2017, 38, 970-977.                                                                                                 | 2.5 | 44        |
| 42 | The isolated carboxyâ€ŧerminal domain of human mitochondrial leucylâ€ <scp>tRNA</scp> synthetase<br>rescues the pathological phenotype of mitochondrial <scp>tRNA</scp> mutations in human cells.<br>EMBO Molecular Medicine, 2014, 6, 169-182. | 6.9 | 43        |
| 43 | Parkin analysis in early onset Parkinson's disease. Parkinsonism and Related Disorders, 2008, 14, 326-333.                                                                                                                                      | 2.2 | 42        |
| 44 | <i><scp>ADCK</scp>3</i> mutations with epilepsy, strokeâ€like episodes and ataxia: a <scp>POLG</scp><br>mimic?. European Journal of Neurology, 2016, 23, 1188-1194.                                                                             | 3.3 | 42        |
| 45 | High frequency stimulation of the subthalamic nucleus is efficacious in Parkin disease. Journal of Neurology, 2005, 252, 208-211.                                                                                                               | 3.6 | 40        |
| 46 | <i>COA7</i> ( <i>C1orf163/RESA1</i> ) mutations associated with mitochondrial<br>leukoencephalopathy and cytochrome c oxidase deficiency. Journal of Medical Genetics, 2016, 53,<br>846-849.                                                    | 3.2 | 40        |
| 47 | Not only dominant, not only optic atrophy: expanding the clinical spectrum associated with OPA1 mutations. Orphanet Journal of Rare Diseases, 2017, 12, 89.                                                                                     | 2.7 | 39        |
| 48 | A novel homozygous mutation in SUCLA2 gene identified by exome sequencing. Molecular Genetics and Metabolism, 2012, 107, 403-408.                                                                                                               | 1.1 | 38        |
| 49 | Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes. Journal of Neurology, 2017, 264, 102-111.                                                                                                         | 3.6 | 38        |
| 50 | SLC25A10 biallelic mutations in intractable epileptic encephalopathy with complex I deficiency. Human<br>Molecular Genetics, 2018, 27, 499-504.                                                                                                 | 2.9 | 37        |
| 51 | Infantile mitochondrial encephalopathy. Seminars in Fetal and Neonatal Medicine, 2011, 16, 205-215.                                                                                                                                             | 2.3 | 36        |
| 52 | Clinical and Biochemical Features in a Patient With Mitochondrial Fission Factor Gene Alteration.<br>Frontiers in Genetics, 2018, 9, 625.                                                                                                       | 2.3 | 34        |
| 53 | The impairment of HCCS leads to MLS syndrome by activating a nonâ€canonical cell death pathway in the brain and eyes. EMBO Molecular Medicine, 2013, 5, 280-293.                                                                                | 6.9 | 33        |
| 54 | KARS-related diseases: progressive leukoencephalopathy with brainstem and spinal cord calcifications as new phenotype and a review of literature. Orphanet Journal of Rare Diseases, 2018, 13, 45.                                              | 2.7 | 32        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Concurrent <i>AFG3L2</i> and <i>SPG7</i> mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation. Human Mutation, 2018, 39, 2060-2071.                            | 2.5 | 32        |
| 56 | Mutations in <i>ELAC2</i> associated with hypertrophic cardiomyopathy impair mitochondrial tRNA<br>3′â€end processing. Human Mutation, 2019, 40, 1731-1748.                                                                                        | 2.5 | 31        |
| 57 | Clinical-genetic features and peculiar muscle histopathology in infantile <i>DNM1L</i> -related mitochondrial epileptic encephalopathy. Human Mutation, 2019, 40, 601-618.                                                                         | 2.5 | 31        |
| 58 | ATPase Domain <scp><i>AFG3L2</i></scp> Mutations Alter <scp>OPA1</scp> Processing and Cause Optic Neuropathy. Annals of Neurology, 2020, 88, 18-32.                                                                                                | 5.3 | 31        |
| 59 | A homozygous MRPL24 mutation causes a complex movement disorder and affects the mitoribosome assembly. Neurobiology of Disease, 2020, 141, 104880.                                                                                                 | 4.4 | 29        |
| 60 | Frequency and phenotypes of LRRK2 G2019S mutation in Italian patients with Parkinson's disease.<br>Movement Disorders, 2006, 21, 1232-1235.                                                                                                        | 3.9 | 28        |
| 61 | GTP-cyclohydrolase I gene mutations in patients with autosomal dominant and recessive GTP-CH1<br>deficiency: Identification and functional characterization of four novel mutations. Journal of<br>Inherited Metabolic Disease, 2004, 27, 455-463. | 3.6 | 27        |
| 62 | Neurologic Phenotypes Associated With Mutations in <i>RTN4IP1</i> ( <i>OPA10</i> ) in Children and<br>Young Adults. JAMA Neurology, 2018, 75, 105.                                                                                                 | 9.0 | 26        |
| 63 | A novel de novo dominant mutation in <i>ISCU</i> associated with mitochondrial myopathy. Journal of<br>Medical Genetics, 2017, 54, 815-824.                                                                                                        | 3.2 | 25        |
| 64 | A nonsense mutation of human <scp>XRCC</scp> 4 is associated with adultâ€onset progressive encephalocardiomyopathy. EMBO Molecular Medicine, 2015, 7, 918-929.                                                                                     | 6.9 | 24        |
| 65 | Clinical findings in a patient with <i>FARS2</i> mutations and earlyâ€infantileâ€encephalopathy with epilepsy. American Journal of Medical Genetics, Part A, 2016, 170, 3004-3007.                                                                 | 1.2 | 24        |
| 66 | Common and Novel TMEM70 Mutations in a Cohort of Italian Patients with Mitochondrial Encephalocardiomyopathy. JIMD Reports, 2014, 15, 71-8.                                                                                                        | 1.5 | 23        |
| 67 | Mutations in <i>TIMM50</i> compromise cell survival in OxPhosâ€dependent metabolic conditions.<br>EMBO Molecular Medicine, 2018, 10, .                                                                                                             | 6.9 | 23        |
| 68 | Clinical, biochemical, and genetic features associated with <i>VARS2</i> -related mitochondrial disease. Human Mutation, 2018, 39, 563-578.                                                                                                        | 2.5 | 22        |
| 69 | Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases, 2013, 8, 66.                                       | 2.7 | 21        |
| 70 | The zebrafish orthologue of the human hepatocerebral disease gene <i>MPV17</i> plays pleiotropic roles in mitochondria. DMM Disease Models and Mechanisms, 2019, 12, .                                                                             | 2.4 | 21        |
| 71 | Current and New Next-Generation Sequencing Approaches to Study Mitochondrial DNA. Journal of Molecular Diagnostics, 2021, 23, 732-741.                                                                                                             | 2.8 | 21        |
| 72 | Neonatal mitochondrial leukoencephalopathy with brain and spinal involvement and high lactate:<br>expanding the phenotype of ISCA2 gene mutations. Metabolic Brain Disease, 2018, 33, 805-812.                                                     | 2.9 | 20        |

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Clinicopathologic and molecular spectrum of <i>RNASEH1</i> -related mitochondrial disease.<br>Neurology: Genetics, 2017, 3, e149.                                                                      | 1.9  | 19        |
| 74 | APOPT 1/ COA 8 assists COX assembly and is oppositely regulated by UPS and ROS. EMBO Molecular Medicine, 2019, 11, .                                                                                   | 6.9  | 19        |
| 75 | MELAS-like encephalomyopathy caused by a new pathogenic mutation in the mitochondrial DNA encoded cytochrome c oxidase subunit I. Neuromuscular Disorders, 2012, 22, 990-994.                          | 0.6  | 18        |
| 76 | A novel mutation in TTC19 associated with isolated complex III deficiency, cerebellar hypoplasia, and bilateral basal ganglia lesions. Frontiers in Genetics, 2014, 5, 397.                            | 2.3  | 17        |
| 77 | Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines, 2021, 9, 833.                                                                                                         | 3.2  | 17        |
| 78 | Biâ€allelic pathogenic variants in <i>NDUFC2</i> cause earlyâ€onset Leigh syndrome and stalled biogenesis<br>of complex I. EMBO Molecular Medicine, 2020, 12, e12619.                                  | 6.9  | 17        |
| 79 | Mitochondrial leukoencephalopathy and complex II deficiency associated with a recessive SDHB mutation with reduced penetrance. Molecular Genetics and Metabolism Reports, 2015, 5, 51-54.              | 1.1  | 16        |
| 80 | Exploiting pyocyanin to treat mitochondrial disease due to respiratory complex III dysfunction. Nature Communications, 2021, 12, 2103.                                                                 | 12.8 | 16        |
| 81 | Clinical, imaging, biochemical and molecular features in Leigh syndrome: a study from the Italian<br>network of mitochondrial diseases. Orphanet Journal of Rare Diseases, 2021, 16, 413.              | 2.7  | 16        |
| 82 | Mitochondrial Complex III Deficiency Caused by TTC19 Defects: Report of a Novel Mutation and Review of Literature. JIMD Reports, 2015, 22, 115-120.                                                    | 1.5  | 15        |
| 83 | Compound heterozygous missense and deep intronic variants in NDUFAF6 unraveled by exome sequencing and mRNA analysis. Journal of Human Genetics, 2018, 63, 563-568.                                    | 2.3  | 15        |
| 84 | Epileptic phenotypes in children with earlyâ€onset mitochondrial diseases. Acta Neurologica<br>Scandinavica, 2019, 140, 184-193.                                                                       | 2.1  | 15        |
| 85 | Homozygous mutations in <i>C1QBP</i> as cause of progressive external ophthalmoplegia (PEO) and mitochondrial myopathy with multiple mtDNA deletions. Human Mutation, 2020, 41, 1745-1750.             | 2.5  | 15        |
| 86 | A family with paroxysmal nonkinesigenic dyskinesias (PNKD): Evidence of mitochondrial dysfunction.<br>European Journal of Paediatric Neurology, 2015, 19, 64-68.                                       | 1.6  | 13        |
| 87 | Leber's Hereditary Optic Neuropathy: A Report on Novel mtDNA Pathogenic Variants. Frontiers in Neurology, 2021, 12, 657317.                                                                            | 2.4  | 13        |
| 88 | Novel <i>NDUFA12</i> variants are associated with isolated complex I defect and variable clinical manifestation. Human Mutation, 2021, 42, 699-710.                                                    | 2.5  | 12        |
| 89 | Bi-allelic variants in OGDHL cause a neurodevelopmental spectrum disease featuring epilepsy, hearing<br>loss, visual impairment, and ataxia. American Journal of Human Genetics, 2021, 108, 2368-2384. | 6.2  | 12        |
| 90 | Functionally pathogenic <i>EARS2</i> variants in vitro may not manifest a phenotype in vivo.<br>Neurology: Genetics, 2017, 3, e162.                                                                    | 1.9  | 11        |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Expanding the phenotypic spectrum of <i>BCS1L</i> â€related mitochondrial disease. Annals of Clinical and Translational Neurology, 2021, 8, 2155-2165.                                                                                                                           | 3.7 | 11        |
| 92  | Benign hereditary chorea and deletions outside NKX2-1: What's the role of MBIP?. European Journal of<br>Medical Genetics, 2018, 61, 581-584.                                                                                                                                     | 1.3 | 9         |
| 93  | Diagnostic Challenges in Late Onset Multiple Acyl-CoA Dehydrogenase Deficiency: Clinical,<br>Morphological, and Genetic Aspects. Frontiers in Neurology, 2022, 13, 815523.                                                                                                       | 2.4 | 7         |
| 94  | Myopathic mitochondrial DNA depletion syndrome associated with biallelic variants in <i>LIG3</i> .<br>Brain, 2021, 144, e74-e74.                                                                                                                                                 | 7.6 | 5         |
| 95  | Homozygous variant in <i>OTX2</i> and possible genetic modifiers identified in a patient with<br>combined pituitary hormone deficiency, ocular involvement, myopathy, ataxia, and mitochondrial<br>impairment. American Journal of Medical Genetics, Part A, 2019, 179, 827-831. | 1.2 | 4         |
| 96  | Biallelic Variants in ENDOG Associated with Mitochondrial Myopathy and Multiple mtDNA Deletions.<br>Cells, 2022, 11, 974.                                                                                                                                                        | 4.1 | 4         |
| 97  | Cerebrospinal Fluid Monoamine Metabolite Analysis in Pediatric Movement Disorders. Journal of<br>Child Neurology, 2015, 30, 1800-1805.                                                                                                                                           | 1.4 | 3         |
| 98  | A novel homozygous MSTO1 mutation in Ashkenazi Jewish siblings with ataxia and myopathy. Journal of Human Genetics, 2021, 66, 835-840.                                                                                                                                           | 2.3 | 3         |
| 99  | The impairment of HCCS leads to MLS syndrome by activating a non anonical cell death pathway in the brain and eyes. EMBO Molecular Medicine, 2014, 6, 849-849.                                                                                                                   | 6.9 | 0         |
| 100 | Response to: "Heterogeneous phenotypic expression of C1QBP variants is attributable to variable heteroplasmy of secondary mtDNA deletions and mtDNA copy number― Human Mutation, 2020, 41, 2014-2015.                                                                            | 2.5 | 0         |
| 101 | A Clinical-Based Diagnostic Approach to Cerebellar Atrophy in Children. Applied Sciences<br>(Switzerland), 2021, 11, 2333.                                                                                                                                                       | 2.5 | 0         |
| 102 | Response to: Phenotypic heterogeneity of Leigh syndrome due to <i>NDUFA12</i> variants is multicausal. Human Mutation, 2022, 43, 99-100.                                                                                                                                         | 2.5 | 0         |