List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5535913/publications.pdf Version: 2024-02-01

STEDHAN CÃI/ANTHED

#	Article	IF	CITATIONS
1	Virus persistence after recovery from acute Lassa fever in Nigeria: a 2-year interim analysis of a prospective longitudinal cohort study. Lancet Microbe, The, 2022, 3, e32-e40.	7.3	13
2	Detection of Lassa Virus-Reactive IgG Antibodies in Wild Rodents: Validation of a Capture Enzyme-Linked Immunological Assay. Viruses, 2022, 14, 993.	3.3	1
3	Detection of Marburg Virus Disease in Guinea. New England Journal of Medicine, 2022, 386, 2528-2530.	27.0	26
4	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 507-516.	9.1	26
5	Human Diversity of Killer Cell Immunoglobulin-Like Receptors and Human Leukocyte Antigen Class I Alleles and Ebola Virus Disease Outcomes. Emerging Infectious Diseases, 2021, 27, 76-84.	4.3	8
6	Characterisation of the T-cell response to Ebola virus glycoprotein amongst survivors of the 2013–16 West Africa epidemic. Nature Communications, 2021, 12, 1153.	12.8	10
7	Acute kidney injury and mortality in pediatric Lassa fever versus question of access to dialysis. International Journal of Infectious Diseases, 2021, 103, 124-131.	3.3	7
8	Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 TÂcell attack. Cell Reports Medicine, 2021, 2, 100209.	6.5	16
9	Metagenomic Snapshots of Viral Components in Guinean Bats. Microorganisms, 2021, 9, 599.	3.6	10
10	Lassa fever outcomes and prognostic factors in Nigeria (LASCOPE): a prospective cohort study. The Lancet Global Health, 2021, 9, e469-e478.	6.3	30
11	X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science, 2021, 372, 642-646.	12.6	240
12	Experimental Morogoro Virus Infection in Its Natural Host, Mastomys natalensis. Viruses, 2021, 13, 851.	3.3	13
13	Validation of Inactivation Methods for Arenaviruses. Viruses, 2021, 13, 968.	3.3	5
14	Factors associated with progression to death in patients with Lassa fever in Nigeria: an observational study. Lancet Infectious Diseases, The, 2021, 21, 876-886.	9.1	8
15	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
16	Resurgence of Ebola virus in 2021 in Guinea suggests a new paradigm for outbreaks. Nature, 2021, 597, 539-543.	27.8	113
17	Conformational changes in Lassa virus L protein associated with promoter binding and RNA synthesis activity. Nature Communications, 2021, 12, 7018.	12.8	26
18	Cytokine Profile Distinguishes Children With Plasmodium falciparum Malaria From Those With Bacterial Blood Stream Infections. Journal of Infectious Diseases, 2020, 221, 1098-1106.	4.0	5

#	Article	IF	CITATIONS
19	Density dependence and persistence of Morogoro arenavirus transmission in a fluctuating population of its reservoir host. Journal of Animal Ecology, 2020, 89, 506-518.	2.8	13
20	A Sporadic and Lethal Lassa Fever Case in Forest Guinea, 2019. Viruses, 2020, 12, 1062.	3.3	7
21	Evaluating case definitions for Ebola virus disease. Lancet Infectious Diseases, The, 2020, 20, 1224-1226.	9.1	1
22	Variation around the dominant viral genome sequence contributes to viral load and outcome in patients with Ebola virus disease. Genome Biology, 2020, 21, 238.	8.8	18
23	Enhanced efficacy of endonuclease inhibitor baloxavir acid against orthobunyaviruses when used in combination with ribavirin. Journal of Antimicrobial Chemotherapy, 2020, 75, 3189-3193.	3.0	5
24	Lassa fever in Benin: description of the 2014 and 2016 epidemics and genetic characterization of a new Lassa virus. Emerging Microbes and Infections, 2020, 9, 1761-1770.	6.5	23
25	Diketo acids inhibit the cap-snatching endonuclease of several Bunyavirales. Antiviral Research, 2020, 183, 104947.	4.1	22
26	Ebola Virus Disease Survivors Show More Efficient Antibody Immunity than Vaccinees Despite Similar Levels of Circulating Immunoglobulins. Viruses, 2020, 12, 915.	3.3	13
27	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
28	Severe Human Lassa Fever Is Characterized by Nonspecific T-Cell Activation and Lymphocyte Homing to Inflamed Tissues. Journal of Virology, 2020, 94, .	3.4	14
29	Clinical Management of Argentine Hemorrhagic Fever using Ribavirin and Favipiravir, Belgium, 2020. Emerging Infectious Diseases, 2020, 26, 1562-1566.	4.3	21
30	Modeling Favipiravir Antiviral Efficacy Against Emerging Viruses: From Animal Studies to Clinical Trials. CPT: Pharmacometrics and Systems Pharmacology, 2020, 9, 258-271.	2.5	20
31	Households as hotspots of Lassa fever? Assessing the spatial distribution of Lassa virus-infected rodents in rural villages of Guinea. Emerging Microbes and Infections, 2020, 9, 1055-1064.	6.5	20
32	Lassa fever clinical course and setting a standard of care for future randomized trials: A protocol for a cohort study of Lassa-infected patients in Nigeria (LASCOPE). Travel Medicine and Infectious Disease, 2020, 36, 101557.	3.0	5
33	Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in adults in Africa: a randomised, observer-blind, placebo-controlled, phase 2 trial. Lancet Infectious Diseases, The, 2020, 20, 707-718.	9.1	45
34	Structural and functional characterization of the severe fever with thrombocytopenia syndrome virus L protein. Nucleic Acids Research, 2020, 48, 5749-5765.	14.5	44
35	Prospective observational study on the pharmacokinetic properties of the Irrua ribavirin regimen used in routine clinical practice in patients with Lassa fever in Nigeria. BMJ Open, 2020, 10, e036936.	1.9	4
36	Field evaluation of a Pan-Lassa rapid diagnostic test during the 2018 Nigerian Lassa fever outbreak. Scientific Reports, 2020, 10, 8724.	3.3	14

#	Article	IF	CITATIONS
37	Caseload and Case Fatality of Lassa Fever in Nigeria, 2001–2018: A Specialist Center's Experience and Its Implications. Frontiers in Public Health, 2019, 7, 170.	2.7	34
38	Tigray Orthohantavirus Infects Two Related Rodent Species Adapted to Different Elevations in Ethiopia. Vector-Borne and Zoonotic Diseases, 2019, 19, 950-953.	1.5	7
39	Phylogeography of Lassa Virus in Nigeria. Journal of Virology, 2019, 93, .	3.4	49
40	Retrospective Cohort Study of Lassa Fever in Pregnancy, Southern Nigeria. Emerging Infectious Diseases, 2019, 25, 1494-1500.	4.3	34
41	Lassa Fever. Infectious Disease Clinics of North America, 2019, 33, 933-951.	5.1	61
42	A40 Estimation of Lassa virus emergence in Upper Guinea through a time-calibrated phylogeny. Virus Evolution, 2019, 5, .	4.9	0
43	Ribavirin for the treatment of Lassa fever: A systematic review and meta-analysis. International Journal of Infectious Diseases, 2019, 87, 15-20.	3.3	94
44	Lassa Virus in Pygmy Mice, Benin, 2016–2017. Emerging Infectious Diseases, 2019, 25, 1977-1979.	4.3	25
45	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
46	Crimean-Congo Hemorrhagic Fever, Kosovo, 2013–2016. Emerging Infectious Diseases, 2019, 25, 321-324.	4.3	15
47	Structure of a functional cap-binding domain in Rift Valley fever virus L protein. PLoS Pathogens, 2019, 15, e1007829.	4.7	41
48	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
49	Evaluation of rodent control to fight Lassa fever based on field data and mathematical modelling. Emerging Microbes and Infections, 2019, 8, 640-649.	6.5	36
50	Biochemical characterization of the Lassa virus L protein. Journal of Biological Chemistry, 2019, 294, 8088-8100.	3.4	35
51	Laboratory Findings, Compassionate Use of Favipiravir, and Outcome in Patients With Ebola Virus Disease, Guinea, 2015—A Retrospective Observational Study. Journal of Infectious Diseases, 2019, 220, 195-202.	4.0	38
52	Ebola virus disease. Lancet, The, 2019, 393, 936-948.	13.7	305
53	Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa fever outbreak. Science, 2019, 363, 74-77.	12.6	201
54	Acute Abdomen in Pediatric Patients With Lassa Fever: Prevalence and Response to Nonoperative Management. Journal of the Pediatric Infectious Diseases Society, 2019, 8, 519-524.	1.3	7

#	Article	IF	CITATIONS
55	ICTV Virus Taxonomy Profile: Arenaviridae. Journal of General Virology, 2019, 100, 1200-1201.	2.9	66
56	Rift Valley fever virus minigenome system for investigating the role of L protein residues in viral transcription and replication. Journal of General Virology, 2019, 100, 1093-1098.	2.9	13
57	Clinical and laboratory predictors of Lassa fever outcome in a dedicated treatment facility in Nigeria: a retrospective, observational cohort study. Lancet Infectious Diseases, The, 2018, 18, 684-695.	9.1	100
58	Arenavirus infection correlates with lower survival of its natural rodent host in a long-term capture-mark-recapture study. Parasites and Vectors, 2018, 11, 90.	2.5	15
59	Small mammal diversity and dynamics within Nigeria, with emphasis on reservoirs of the lassa virus. Systematics and Biodiversity, 2018, 16, 118-127.	1.2	19
60	Biochemical and structural studies reveal differences and commonalities among cap-snatching endonucleases from segmented negative-strand RNA viruses. Journal of Biological Chemistry, 2018, 293, 19686-19698.	3.4	31
61	Widespread arenavirus occurrence and seroprevalence in small mammals, Nigeria. Parasites and Vectors, 2018, 11, 416.	2.5	41
62	T-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in Humans. Journal of Infectious Diseases, 2018, 218, S508-S518.	4.0	25
63	The European Virus Archive goes global: A growing resource for research. Antiviral Research, 2018, 158, 127-134.	4.1	30
64	Acute Lassa Virus Encephalitis with Lassa Virus in the Cerebrospinal Fluid but Absent in the Blood: A Case Report with a Positive Outcome. Case Reports in Neurology, 2018, 10, 150-158.	0.7	12
65	Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infection, Genetics and Evolution, 2018, 65, 6-11.	2.3	66
66	Kinetics of Soluble Mediators of the Host Response in Ebola Virus Disease. Journal of Infectious Diseases, 2018, 218, S496-S503.	4.0	25
67	New Lineage of Lassa Virus, Togo, 2016. Emerging Infectious Diseases, 2018, 24, 599-602.	4.3	79
68	Development and evaluation of antibody-capture immunoassays for detection of Lassa virus nucleoprotein-specific immunoglobulin M and G. PLoS Neglected Tropical Diseases, 2018, 12, e0006361.	3.0	18
69	Sensitive and specific detection of Crimean-Congo Hemorrhagic Fever Virus (CCHFV)—Specific IgM and IgG antibodies in human sera using recombinant CCHFV nucleoprotein as antigen in μ-capture and IgG immune complex (IC) ELISA tests. PLoS Neglected Tropical Diseases, 2018, 12, e0006366.	3.0	37
70	Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques. PLoS Medicine, 2018, 15, e1002535.	8.4	108
71	Field investigation with real-time virus genetic characterisation support of a cluster of Ebola virus disease cases in Dubréka, Guinea, April to June 2015. Eurosurveillance, 2018, 23, .	7.0	11
72	Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biology, 2017, 18, 4.	8.8	115

5

#	Article	IF	CITATIONS
73	Persistence and clearance of Ebola virus RNA from seminal fluid of Ebola virus disease survivors: a longitudinal analysis and modelling study. The Lancet Global Health, 2017, 5, e80-e88.	6.3	100
74	Ebola virus infection kinetics in chimeric mice reveal a key role of T cells as barriers for virus dissemination. Scientific Reports, 2017, 7, 43776.	3.3	31
75	Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 2017, 544, 309-315.	27.8	346
76	Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet, The, 2017, 389, 505-518.	13.7	837
77	Determining Ribavirin's mechanism of action against Lassa virus infection. Scientific Reports, 2017, 7, 11693.	3.3	36
78	Deep Sequencing of RNA from Blood and Oral Swab Samples Reveals the Presence of Nucleic Acid from a Number of Pathogens in Patients with Acute Ebola Virus Disease and Is Consistent with Bacterial Translocation across the Gut. MSphere, 2017, 2, .	2.9	30
79	No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions. Parasites and Vectors, 2017, 10, 210.	2.5	20
80	G311â€Lassa fever and convulsions associated with fever: A case-control study. , 2017, , .		1
81	Genetic Diversity and New Lineages of Dengue Virus Serotypes 3 and 4 in Returning Travelers, Germany, 2006–2015. Emerging Infectious Diseases, 2017, 23, 272-275.	4.3	25
82	Structural insights into reptarenavirus cap-snatching machinery. PLoS Pathogens, 2017, 13, e1006400.	4.7	32
83	Prevalence of Lassa Virus Disease (LVD) in Nigerian children with fever or fever and convulsions in an endemic area. PLoS Neglected Tropical Diseases, 2017, 11, e0005711.	3.0	32
84	Increased Proinflammatory Cytokine Levels in Prolonged Arthralgia in Ross River Virus Infection. Emerging Infectious Diseases, 2017, 23, 702-704.	4.3	12
85	Control measures following a case of imported Lassa fever from Togo, North Rhine Westphalia, Germany, 2016. Eurosurveillance, 2017, 22, .	7.0	28
86	External quality assessment study for ebolavirus PCR-diagnostic promotes international preparedness during the 2014 – 2016 Ebola outbreak in West Africa. PLoS Neglected Tropical Diseases, 2017, 11, e0005570.	3.0	13
87	Different features of VÎ'2 T and NK cells in fatal and non-fatal human Ebola infections. PLoS Neglected Tropical Diseases, 2017, 11, e0005645.	3.0	46
88	Interferon β-1a for the treatment of Ebola virus disease: A historically controlled, single-arm proof-of-concept trial. PLoS ONE, 2017, 12, e0169255.	2.5	48
89	Arenavirus Diversity and Phylogeography of <i>Mastomys natalensis</i> Rodents, Nigeria. Emerging Infectious Diseases, 2016, 22, 687-690.	4.3	36
90	Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea. PLoS Medicine, 2016, 13, e1001967.	8.4	382

#	Article	IF	CITATIONS
91	Chimeric Mice with Competent Hematopoietic Immunity Reproduce Key Features of Severe Lassa Fever. PLoS Pathogens, 2016, 12, e1005656.	4.7	41
92	Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Scientific Reports, 2016, 6, 21977.	3.3	28
93	New Hosts of The Lassa Virus. Scientific Reports, 2016, 6, 25280.	3.3	130
94	Ebola Virus Persistence in Breast Milk After No Reported Illness: A Likely Source of Virus Transmission From Mother to Child. Clinical Infectious Diseases, 2016, 64, ciw793.	5.8	70
95	Crimean congo hemorrhagic fever, 2013 and 2014 Sudan. International Journal of Infectious Diseases, 2016, 53, 9.	3.3	4
96	Unique human immune signature of Ebola virus disease in Guinea. Nature, 2016, 533, 100-104.	27.8	170
97	Resurgence of Ebola Virus Disease in Guinea Linked to a Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days. Clinical Infectious Diseases, 2016, 63, 1353-1356.	5.8	201
98	Ebola Virus Disease Is Characterized by Poor Activation and Reduced Levels of Circulating CD16 ⁺ Monocytes. Journal of Infectious Diseases, 2016, 214, S275-S280.	4.0	31
99	Evaluation of RealStar Reverse Transcription–Polymerase Chain Reaction Kits for Filovirus Detection in the Laboratory and Field. Journal of Infectious Diseases, 2016, 214, S243-S249.	4.0	33
100	Pathogenicity Comparison Between the Kikwit and Makona Ebola Virus Variants in Rhesus Macaques. Journal of Infectious Diseases, 2016, 214, S281-S289.	4.0	30
101	Analysis of Diagnostic Findings From the European Mobile Laboratory in Guéckédou, Guinea, March 2014 Through March 2015. Journal of Infectious Diseases, 2016, 214, S250-S257.	4.0	32
102	Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evolution, 2016, 2, vew016.	4.9	105
103	Real-time, portable genome sequencing for Ebola surveillance. Nature, 2016, 530, 228-232.	27.8	1,179
104	Dilemmas in Managing Pregnant Women With Ebola: 2 Case Reports: Table 1 Clinical Infectious Diseases, 2016, 62, 903-905.	5.8	56
105	Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever. Journal of Infectious Diseases, 2016, 213, 934-938.	4.0	95
106	Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Medical Microbiology and Immunology, 2016, 205, 269-273.	4.8	142
107	Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein. PLoS Pathogens, 2016, 12, e1005635.	4.7	31
108	Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathogens, 2016, 12, e1005636.	4.7	84

STEPHAN GÃ¹/4NTHER

#	Article	IF	CITATIONS
109	Shedding dynamics of Morogoro virus, an African arenavirus closely related to Lassa virus, in its natural reservoir host Mastomys natalensis. Scientific Reports, 2015, 5, 10445.	3.3	37
110	Gairo virus, a novel arenavirus of the widespread Mastomys natalensis : Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology, 2015, 476, 249-256.	2.4	34
111	Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: interim results from the Guinea ring vaccination cluster-randomised trial. Lancet, The, 2015, 386, 857-866.	13.7	715
112	International External Quality Assessment Study for Molecular Detection of Lassa Virus. PLoS Neglected Tropical Diseases, 2015, 9, e0003793.	3.0	32
113	Ebola Virus Disease in Mice with Transplanted Human Hematopoietic Stem Cells. Journal of Virology, 2015, 89, 4700-4704.	3.4	36
114	Health Care Response to CCHF in US Soldier and Nosocomial Transmission to Health Care Providers, Germany, 2009. Emerging Infectious Diseases, 2015, 21, 23-31.	4.3	62
115	Clinical Sequencing Uncovers Origins and Evolution of Lassa Virus. Cell, 2015, 162, 738-750.	28.9	230
116	Ebola virus dynamics in mice treated with favipiravir. Antiviral Research, 2015, 123, 70-77.	4.1	57
117	Research efforts to control highly pathogenic arenaviruses: A summary of the progress and gaps. Journal of Clinical Virology, 2015, 64, 120-127.	3.1	35
118	Zika virus infections imported to Italy: Clinical, immunological and virological findings, and public health implications. Journal of Clinical Virology, 2015, 63, 32-35.	3.1	158
119	Lassa Serology in Natural Populations of Rodents and Horizontal Transmission. Vector-Borne and Zoonotic Diseases, 2014, 14, 665-674.	1.5	52
120	Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014. Viruses, 2014, 6, 4760-4799.	3.3	83
121	Evaluation of Antiviral Efficacy of Ribavirin, Arbidol, and T-705 (Favipiravir) in a Mouse Model for Crimean-Congo Hemorrhagic Fever. PLoS Neglected Tropical Diseases, 2014, 8, e2804.	3.0	138
122	Human Dobrava-Belgrade hantavirus infection, Kosovo. Journal of Clinical Virology, 2014, 61, 439-441.	3.1	3
123	A Case of Severe Ebola Virus Infection Complicated by Gram-Negative Septicemia. New England Journal of Medicine, 2014, 371, 2394-2401.	27.0	270
124	Emergence of Zaire Ebola Virus Disease in Guinea. New England Journal of Medicine, 2014, 371, 1418-1425.	27.0	1,193
125	Role of the C Terminus of Lassa Virus L Protein in Viral mRNA Synthesis. Journal of Virology, 2014, 88, 8713-8717.	3.4	27
126	Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 2014, 105, 17-21.	4.1	428

#	Article	IF	CITATIONS
127	Seroepidemiological study reveals regional coâ€occurrence of <scp>L</scp> assa―and <scp>H</scp> antavirus antibodies in <scp>U</scp> pper <scp>G</scp> uinea, <scp>W</scp> est <scp>A</scp> frica. Tropical Medicine and International Health, 2013, 18, 366-371.	2.3	23
128	Containing a Lassa fever epidemic in a resource-limited setting: outbreak description and lessons learned from Abakaliki, Nigeria (January–March 2012). International Journal of Infectious Diseases, 2013, 17, e1011-e1016.	3.3	72
129	Hospital-Based Surveillance for Viral Hemorrhagic Fevers and Hepatitides in Ghana. PLoS Neglected Tropical Diseases, 2013, 7, e2435.	3.0	24
130	The N Terminus of Andes Virus L Protein Suppresses mRNA and Protein Expression in Mammalian Cells. Journal of Virology, 2013, 87, 6975-6985.	3.4	17
131	Infection of Type I Interferon Receptor-Deficient Mice with Various Old World Arenaviruses: A Model for Studying Virulence and Host Species Barriers. PLoS ONE, 2013, 8, e72290.	2.5	44
132	Molecular Diagnostics for Lassa Fever at Irrua Specialist Teaching Hospital, Nigeria: Lessons Learnt from Two Years of Laboratory Operation. PLoS Neglected Tropical Diseases, 2012, 6, e1839.	3.0	131
133	High Diversity of RNA Viruses in Rodents, Ethiopia. Emerging Infectious Diseases, 2012, 18, 2047-2050.	4.3	41
134	Detection of Usutu virus infection in a healthy blood donor from south-west Germany, 2012. Eurosurveillance, 2012, 17, .	7.0	66
135	Presence of Mopeia Virus, an African Arenavirus, Related to Biotope and Individual Rodent Host Characteristics: Implications for Virus Transmission. Vector-Borne and Zoonotic Diseases, 2011, 11, 1125-1131.	1.5	44
136	Complete sequence and phylogenetic characterisation of Crimean–Congo hemorrhagic fever virus from Afghanistan. Journal of Clinical Virology, 2011, 50, 90-92.	3.1	36
137	Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Research, 2011, 91, 89-93.	4.1	55
138	Domain Structure of Lassa Virus L Protein. Journal of Virology, 2011, 85, 324-333.	3.4	30
139	Current Molecular Epidemiology of Lassa Virus in Nigeria. Journal of Clinical Microbiology, 2011, 49, 1157-1161.	3.9	68
140	Cross-Species Analysis of the Replication Complex of Old World Arenaviruses Reveals Two Nucleoprotein Sites Involved in L Protein Function. Journal of Virology, 2011, 85, 12518-12528.	3.4	29
141	Structure of the Lassa Virus Nucleoprotein Revealed by X-ray Crystallography, Small-angle X-ray Scattering, and Electron Microscopy. Journal of Biological Chemistry, 2011, 286, 38748-38756.	3.4	47
142	Management of Accidental Exposure to Ebola Virus in the Biosafety Level 4 Laboratory, Hamburg, Germany. Journal of Infectious Diseases, 2011, 204, S785-S790.	4.0	138
143	Novel Arenavirus Sequences in Hylomyscus sp. and Mus (Nannomys) setulosus from Côte d'Ivoire: Implications for Evolution of Arenaviruses in Africa. PLoS ONE, 2011, 6, e20893.	2.5	72
144	Laboratory Diagnosis of Lassa Fever, Liberia. Emerging Infectious Diseases, 2010, 16, 1041-1043.	4.3	20

#	Article	IF	CITATIONS
145	Improved Detection of Lassa Virus by Reverse Transcription-PCR Targeting the 5′ Region of S RNA. Journal of Clinical Microbiology, 2010, 48, 2009-2013.	3.9	84
146	An N-Terminal Region of Lassa Virus L Protein Plays a Critical Role in Transcription but Not Replication of the Virus Genome. Journal of Virology, 2010, 84, 1934-1944.	3.4	53
147	T Cell-Dependence of Lassa Fever Pathogenesis. PLoS Pathogens, 2010, 6, e1000836.	4.7	89
148	The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription. PLoS Pathogens, 2010, 6, e1001038.	4.7	145
149	Sympatric Occurrence of 3 Arenaviruses, Tanzania. Emerging Infectious Diseases, 2010, 16, 692-695.	4.3	33
150	Early serodiagnosis of acute human Crimean-Congo hemorrhagic fever virus infections by novel capture assays. Journal of Clinical Virology, 2010, 48, 294-295.	3.1	12
151	New lessons from a case series review of Lassa fever in pregnancy. International Journal of Infectious Diseases, 2010, 14, e380.	3.3	6
152	Mopeia Virus–related Arenavirus in Natal Multimammate Mice <i>,</i> Morogoro, Tanzania. Emerging Infectious Diseases, 2009, 15, 2008-2012.	4.3	54
153	The European network of Biosafety-Level-4 laboratories: enhancing European preparedness for new health threats. Clinical Microbiology and Infection, 2009, 15, 720-726.	6.0	22
154	Co-replication analyses of naturally occurring defective hepatitis B virus variants with wild-type. Virology, 2008, 372, 247-259.	2.4	9
155	Strain-specific antibody response to Lassa virus in the local population of west Africa. Journal of Clinical Virology, 2008, 42, 40-44.	3.1	33
156	Mutational Evidence for a Structural Model of the Lassa Virus RNA Polymerase Domain and Identification of Two Residues, Gly1394 and Asp1395, That Are Critical for Transcription but Not Replication of the Genome. Journal of Virology, 2008, 82, 10207-10217.	3.4	40
157	Broad-Spectrum Antiviral Activity of Small Interfering RNA Targeting the Conserved RNA Termini of Lassa Virus. Antimicrobial Agents and Chemotherapy, 2007, 51, 2215-2218.	3.2	29
158	Diagnostic Reverseâ€Transcription Polymerase Chain Reaction Kit for Filoviruses Based on the Strain Collections of all European Biosafety Level 4 Laboratories. Journal of Infectious Diseases, 2007, 196, S199-S204.	4.0	65
159	RT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2007, 101, 1253-1264.	1.8	107
160	Analysis of gene expression in Lassa virus-infected HuH-7 cells. Journal of General Virology, 2007, 88, 1568-1575.	2.9	24
161	Genetic variation in HBV infection: genotypes and mutants. Journal of Clinical Virology, 2006, 36, S3-S11.	3.1	41
162	Functional Analysis of Complex Hepatitis B Virus Variants Associated With Development of Liver Cirrhosis. Gastroenterology, 2006, 131, 765-780.	1.3	39

#	Article	IF	CITATIONS
163	Reverse ELISA for IgG and IgM antibodies to detect Lassa virus infections in Africa. Journal of Clinical Virology, 2006, 37, 277-281.	3.1	33
164	<i>Mastomys natalensi</i> s and Lassa Fever, West Africa. Emerging Infectious Diseases, 2006, 12, 1971-1974.	4.3	175
165	Mutational Analysis of the Lassa Virus Promoter. Journal of Virology, 2006, 80, 12414-12419.	3.4	44
166	Functional analysis of hepatitis B virus reactivating in hepatitis B surface antigen-negative individuals. Hepatology, 2005, 42, 93-103.	7.3	92
167	Cinanserin Is an Inhibitor of the 3C-Like Proteinase of Severe Acute Respiratory Syndrome Coronavirus and Strongly Reduces Virus Replication In Vitro. Journal of Virology, 2005, 79, 7095-7103.	3.4	185
168	Inhibition of Different Lassa Virus Strains by Alpha and Gamma Interferons and Comparison with a Less Pathogenic Arenavirus. Journal of Virology, 2004, 78, 3162-3169.	3.4	81
169	First International Quality Assurance Study on the Rapid Detection of Viral Agents of Bioterrorism. Journal of Clinical Microbiology, 2004, 42, 1753-1755.	3.9	47
170	Replicon System for Lassa Virus. Journal of Virology, 2004, 78, 13793-13803.	3.4	122
171	Sequence analysis of L RNA of Lassa virus. Virology, 2004, 318, 153-168.	2.4	92
172	Application of real-time PCR for testing antiviral compounds against Lassa virus, SARS coronavirus and Ebola virus in vitro. Antiviral Research, 2004, 63, 209-215.	4.1	54
173	Lassa Virus. Critical Reviews in Clinical Laboratory Sciences, 2004, 41, 339-390.	6.1	179
174	Prevalence of hepatitis B virus DNA in anti-HBc-positive/HBsAg-negative sera correlates with HCV but not HIV serostatus. Journal of Clinical Virology, 2004, 29, 59-68.	3.1	36
175	Molecular diagnostics of viral hemorrhagic fevers. Antiviral Research, 2003, 57, 61-87.	4.1	135
176	Identification of a Novel Coronavirus in Patients with Severe Acute Respiratory Syndrome. New England Journal of Medicine, 2003, 348, 1967-1976.	27.0	3,971
177	Imported Lassa Fever in Germany: Surveillance and Management of Contact Persons. Clinical Infectious Diseases, 2003, 36, 1254-1258.	5.8	139
178	Monitoring of clinical and laboratory data in two cases of imported Lassa fever. Microbes and Infection, 2002, 4, 43-50.	1.9	116
179	Rapid Detection and Quantification of RNA of Ebola and Marburg Viruses, Lassa Virus, Crimean-Congo Hemorrhagic Fever Virus, Rift Valley Fever Virus, Dengue Virus, and Yellow Fever Virus by Real-Time Reverse Transcription-PCR. Journal of Clinical Microbiology, 2002, 40, 2323-2330.	3.9	527
180	Sequence and phylogenetic analysis of hepatitis B virus genotype G isolated in Germany. Virus Genes, 2002, 24, 153-156.	1.6	72

#	Article	IF	CITATIONS
181	Complex HBV populations with mutations in core promoter, C gene, and pre-S region are associated with development of cirrhosis in long-term renal transplant recipients. Hepatology, 2002, 35, 466-477.	7.3	77
182	Antibodies to Lassa virus Z protein and nucleoprotein co-occur in human sera from Lassa fever endemic regions. Medical Microbiology and Immunology, 2001, 189, 225-229.	4.8	17
183	Structural and functional heterogeneity of naturally occurring hepatitis B virus variants. Antiviral Research, 2001, 52, 125-138.	4.1	20
184	Lassa Fever Encephalopathy: Lassa Virus in Cerebrospinal Fluid but Not in Serum. Journal of Infectious Diseases, 2001, 184, 345-349.	4.0	86
185	Reactivation of Hepatitis B Virus Replication Accompanied by Acute Hepatitis in Patients Receiving Highly Active Antiretroviral Therapy. Clinical Infectious Diseases, 2001, 32, 144-148.	5.8	127
186	Naturally occurring mutations of hepatitis B virus and outcome of chronic infection: Is there an association?. European Journal of Clinical Investigation, 2000, 30, 751-753.	3.4	4
187	Enhanced Replication Contributes to Enrichment of Hepatitis B Virus with a Deletion in the Core Gene. Virology, 2000, 273, 286-299.	2.4	34
188	Imported Lassa Fever in Germany: Molecular Characterization of a New Lassa Virus Strain. Emerging Infectious Diseases, 2000, 6, 466-476.	4.3	168
189	Naturally Occurring Variants of Hepatitis B Virus. Advances in Virus Research, 1999, 52, 25-137.	2.1	222
190	Hepatitis B virus genomes from long-term immunosuppressed virus carriers are modified by specific mutations in several regions. Journal of General Virology, 1999, 80, 2685-2691.	2.9	35
191	Functional analysis of HBV genomes from patients with fulminant hepatitis. Hepatology, 1998, 28, 1390-1397.	7.3	56
192	Analysis of Hepatitis B Virus Populations in an Interferon-α-Treated Patient Reveals Predominant Mutations in the C-Gene and Changing e-Antigenicity. Virology, 1998, 244, 146-160.	2.4	36
193	Neonatal Fulminant Hepatitis B: Structural and Functional Analysis of Complete Hepatitis B Virus Genomes from Mother and Infant. Journal of Infectious Diseases, 1998, 177, 1378-1381.	4.0	42
194	Wild-type levels of pregenomic RNA and replication but reduced pre-C RNA and e-antigen synthesis of hepatitis B virus with C(1653)> T, A(1762)> T and G(1764)> A mutations in the core promoter Journal of General Virology, 1998, 79, 375-380.	2.9	95
195	Amplification of Full-Length Hepatitis B Virus Genomes from Samples from Patients with Low Levels of Viremia: Frequency and Functional Consequences of PCR-Introduced Mutations. Journal of Clinical Microbiology, 1998, 36, 531-538.	3.9	83
196	Familial clustering of HBV pre-C and pre-S mutants. Journal of Hepatology, 1997, 26, 221-227.	3.7	19
197	Hepatitis B virus sequence changes evolving in liver transplant recipients with fulminant hepatitis. Journal of Hepatology, 1997, 26, 754-764.	3.7	63
198	Naturally Occurring Hepatitis B Virus Genomes Bearing the Hallmarks of Retroviral G → A Hypermutation. Virology, 1997, 235, 104-108.	2.4	77

#	Article	IF	CITATIONS
199	Heterogeneity and Common Features of Defective Hepatitis B Virus Genomes Derived from Spliced Pregenomic RNA. Virology, 1997, 238, 363-371.	2.4	115
200	A New Class of Defective Hepatitis B Virus Genomes with an Internal Poly(dA) Sequence. Virology, 1997, 239, 402-412.	2.4	12
201	Hepatitis B virus variants with core gene deletions in the evolution of chronic hepatitis B infection. Gastroenterology, 1996, 111, 183-192.	1.3	49
202	Hepatitis B virus genomes of patients with fulminant hepatitis do not share a specific mutation. Hepatology, 1996, 24, 300-306.	7.3	95
203	Accumulation and persistence of hepatitis B virus core gene deletion mutants in renal transplant patients are associated with end-stage liver disease. Hepatology, 1996, 24, 751-758.	7.3	59
204	Type, prevalence, and significance of core promoter/enhancer II mutations in hepatitis B viruses from immunosuppressed patients with severe liver disease. Journal of Virology, 1996, 70, 8318-8331.	3.4	134
205	A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. Journal of Virology, 1995, 69, 5437-5444.	3.4	464
206	Heterogeneity of hepatitis B virus C-gene sequences: Implications for amplification and sequencing. Journal of Hepatology, 1993, 18, 53-61.	3.7	22
207	Frequent and rapid emergence of mutated pre-C sequences in HBV from e-antigen positive carriers who seroconvert to anti-HBe during interferon treatment. Virology, 1992, 187, 271-279.	2.4	99