Deniz BaÅ**K**ent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5535033/publications.pdf Version: 2024-02-01

		159585	118850
96	4,286	30	62
papers	citations	h-index	g-index
112	112	112	2301
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-reported music perception is related to quality of life and self-reported hearing abilities in cochlear implant users. Cochlear Implants International, 2022, 23, 1-10.	1.2	8
2	Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	1
3	Do Musicians and Non-musicians Differ in Speech-on-Speech Processing?. Frontiers in Psychology, 2021, 12, 623787.	2.1	6
4	Development and structure of the VariaNTS corpus: A spoken Dutch corpus containing talker and linguistic variability. Speech Communication, 2021, 127, 64-72.	2.8	3
5	Degraded visual and auditory input individually impair audiovisual emotion recognition from speech-like stimuli, but no evidence for an exacerbated effect from combined degradation. Vision Research, 2021, 180, 51-62.	1.4	9
6	School-age children benefit from voice gender cue differences for the perception of speech in competing speech. Journal of the Acoustical Society of America, 2021, 149, 3328-3344.	1.1	9
7	The effects of lexical content, acoustic and linguistic variability, and vocoding on voice cue perception. Journal of the Acoustical Society of America, 2021, 150, 1620-1634.	1.1	11
8	Effect of Channel Interaction on Vocal Cue Perception in Cochlear Implant Users. Trends in Hearing, 2021, 25, 233121652110301.	1.3	4
9	Effect of Spectral Contrast Enhancement on Speech-on-Speech Intelligibility and Voice Cue Sensitivity in Cochlear Implant Users. Ear and Hearing, 2021, 42, 271-289.	2.1	9
10	Auditory and Visual Integration for Emotion Recognition and Compensation for Degraded Signals are Preserved With Age. Trends in Hearing, 2021, 25, 233121652110453.	1.3	3
11	Meta-Analysis on the Identification of Linguistic and Emotional Prosody in Cochlear Implant Users and Vocoder Simulations. Ear and Hearing, 2020, 41, 1092-1102.	2.1	24
12	Eyes on Emotion: Dynamic Gaze Allocation During Emotion Perception From Speech-Like Stimuli. Multisensory Research, 2020, 34, 17-47.	1.1	5
13	Talker variability in word recognition under cochlear implant simulation: Does talker gender matter?. Journal of the Acoustical Society of America, 2020, 147, EL370-EL376.	1.1	8
14	Effect of Spectral Channels on Speech Recognition, Comprehension, and Listening Effort in Cochlear-Implant Users. Trends in Hearing, 2020, 24, 233121652090461.	1.3	10
15	Development of voice perception is dissociated across gender cues in school-age children. Scientific Reports, 2020, 10, 5074.	3.3	19
16	The impact of speaking style on speech recognition in quiet and multi-talker babble in adult cochlear implant users. Journal of the Acoustical Society of America, 2020, 147, 101-107.	1.1	13
17	Individual Differences in Lexical Access Among Cochlear Implant Users. Journal of Speech, Language, and Hearing Research, 2020, 63, 286-304.	1.6	16
18	Development of vocal emotion recognition in school-age children: The EmoHI test for hearing-impaired populations. PeerJ, 2020, 8, e8773.	2.0	15

#	Article	IF	CITATIONS
19	Perceptual Discrimination of Speaking Style Under Cochlear Implant Simulation. Ear and Hearing, 2019, 40, 63-76.	2.1	7
20	Effects of Additional Low-Pass–Filtered Speech on Listening Effort for Noise-Band–Vocoded Speech in Quiet and in Noise. Ear and Hearing, 2019, 40, 3-17.	2.1	5
21	Early Deafened, Late Implanted Cochlear Implant Users Appreciate Music More Than and Identify Music as Well as Postlingual Users. Frontiers in Neuroscience, 2019, 13, 1050.	2.8	10
22	Spatial release from informational masking declines with age: Evidence from a detection task in a virtual separation paradigm. Journal of the Acoustical Society of America, 2019, 146, 548-566.	1.1	11
23	Individual Variations in Effort: Assessing Pupillometry for the Hearing Impaired. Trends in Hearing, 2019, 23, 233121651984559.	1.3	29
24	Does good perception of vocal characteristics relate to better speech-on-speech intelligibility for cochlear implant users?. Journal of the Acoustical Society of America, 2019, 145, 417-439.	1.1	27
25	Ventriloquist Illusion Produced With Virtual Acoustic Spatial Cues and Asynchronous Audiovisual Stimuli in Both Young and Older Individuals. Multisensory Research, 2019, 32, 745-770.	1.1	7
26	Visual and auditory temporal integration in healthy younger and older adults. Psychological Research, 2019, 83, 951-967.	1.7	7
27	Comparison of Two Music Training Approaches on Music and Speech Perception in Cochlear Implant Users. Trends in Hearing, 2018, 22, 233121651876537.	1.3	36
28	The Cochlear Implant EEG Artifact Recorded From an Artificial Brain for Complex Acoustic Stimuli. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26, 392-399.	4.9	17
29	Neural Entrainment to Speech Modulates Speech Intelligibility. Current Biology, 2018, 28, 161-169.e5.	3.9	165
30	Musician effect on perception of spectro-temporally degraded speech, vocal emotion, and music in young adolescents. Journal of the Acoustical Society of America, 2018, 143, EL311-EL316.	1.1	13
31	Discrimination of Voice Pitch and Vocal-Tract Length in Cochlear Implant Users. Ear and Hearing, 2018, 39, 226-237.	2.1	75
32	Effect of frequency mismatch and band partitioning on vocal tract length perception in vocoder simulations of cochlear implant processing. Journal of the Acoustical Society of America, 2018, 143, 3505-3519.	1.1	6
33	The discrimination of voice cues in simulations of bimodal electro-acoustic cochlear-implant hearing. Journal of the Acoustical Society of America, 2018, 143, EL292-EL297.	1.1	12
34	Effect of <i>F</i> O contours on top-down repair of interrupted speech. Journal of the Acoustical Society of America, 2017, 142, EL7-EL12.	1.1	7
35	The Timing and Effort of Lexical Access in Natural and Degraded Speech. Frontiers in Psychology, 2016, 7, 398.	2.1	31
36	Cognitive Compensation of Speech Perception With Hearing Impairment, Cochlear Implants, and Aging. Trends in Hearing, 2016, 20, 233121651667027.	1.3	34

#	Article	IF	CITATIONS
37	Musician advantage for speech-on-speech perception. Journal of the Acoustical Society of America, 2016, 139, EL51-EL56.	1.1	88
38	Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing. Advances in Experimental Medicine and Biology, 2016, , .	1.6	11
39	The Intelligibility of Interrupted Speech: Cochlear Implant Users and Normal Hearing Listeners. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 475-491.	1.8	29
40	The Role of Sound in Residential Facilities for People With Profound Intellectual and Multiple Disabilities. Journal of Policy and Practice in Intellectual Disabilities, 2016, 13, 61-68.	2.7	25
41	Does Signal Degradation Affect Top–Down Processing of Speech?. Advances in Experimental Medicine and Biology, 2016, 894, 297-306.	1.6	9
42	Pitch and spectral resolution: A systematic comparison of bottom-up cues for top-down repair of degraded speech. Journal of the Acoustical Society of America, 2016, 139, 395-405.	1.1	20
43	Validation of a simple response-time measure of listening effort. Journal of the Acoustical Society of America, 2015, 138, EL187-EL192.	1.1	52
44	Normal-Hearing Listeners' and Cochlear Implant Users' Perception of Pitch Cues in Emotional Speech. I-Perception, 2015, 6, 030100661559913.	1.4	22
45	A Retrospective Multicenter Study Comparing Speech Perception Outcomes for Bilateral Implantation and Bimodal Rehabilitation. Ear and Hearing, 2015, 36, 408-416.	2.1	70
46	The Gap Detection Test. Ear and Hearing, 2015, 36, e138-e145.	2.1	52
47	Envelope Interactions in Multi-Channel Amplitude Modulation Frequency Discrimination by Cochlear Implant Users. PLoS ONE, 2015, 10, e0139546.	2.5	1
48	Factors limiting vocal-tract length discrimination in cochlear implant simulations. Journal of the Acoustical Society of America, 2015, 137, 1298-1308.	1.1	41
49	Modulation frequency discrimination with single and multiple channels in cochlear implant users. Hearing Research, 2015, 324, 7-18.	2.0	6
50	The effect of visual cues on top-down restoration of temporally interrupted speech, with and without further degradations. Hearing Research, 2015, 328, 24-33.	2.0	5
51	Single- and Multi-Channel Modulation Detection in Cochlear Implant Users. PLoS ONE, 2014, 9, e99338.	2.5	10
52	The musician effect: does it persist under degraded pitch conditions of cochlear implant simulations?. Frontiers in Neuroscience, 2014, 8, 179.	2.8	64
53	Susceptibility to interference by music and speech maskers in middle-aged adults. Journal of the Acoustical Society of America, 2014, 135, EL147-EL153.	1.1	24
54	T'ain't the way you say it, it's what you say – Perceptual continuity of voice and top–down restoration of speech. Hearing Research, 2014, 315, 80-87.	2.0	23

Deniz BaÅŸkent

#	Article	IF	CITATIONS
55	Musician effect in cochlear implant simulated gender categorization. Journal of the Acoustical Society of America, 2014, 135, EL159-EL165.	1.1	12
56	Individual differences in top-down restoration of interrupted speech: Links to linguistic and cognitive abilities. Journal of the Acoustical Society of America, 2014, 135, EL88-EL94.	1.1	48
57	Measure and model of vocal-tract length discrimination in cochlear implants. , 2014, , .		1
58	Perceptual learning of temporally interrupted spectrally degraded speech. Journal of the Acoustical Society of America, 2014, 136, 1344-1351.	1.1	10
59	Gender Categorization Is Abnormal in Cochlear Implant Users. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 1037-1048.	1.8	81
60	Perceptual Restoration of Degraded Speech Is Preserved with Advancing Age. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 139-148.	1.8	43
61	Top–down restoration of speech in cochlear-implant users. Hearing Research, 2014, 309, 113-123.	2.0	44
62	A method to dynamically control unwanted loudness cues when measuring amplitude modulation detection in cochlear implant users. Journal of Neuroscience Methods, 2014, 222, 207-212.	2.5	9
63	Temporal integration of consecutive tones into synthetic vowels demonstrates perceptual assembly in audition Journal of Experimental Psychology: Human Perception and Performance, 2014, 40, 857-869.	0.9	7
64	Factors Affecting Auditory Performance of Postlinguistically Deaf Adults Using Cochlear Implants: An Update with 2251 Patients. Audiology and Neuro-Otology, 2013, 18, 36-47.	1.3	477
65	Perception of spectrally degraded reflexives and pronouns by children. Journal of the Acoustical Society of America, 2013, 134, 3844-3852.	1.1	4
66	Listening Effort With Cochlear Implant Simulations. Journal of Speech, Language, and Hearing Research, 2013, 56, 1075-1084.	1.6	87
67	Music and Quality of Life in Early-Deafened Late-Implanted Adult Cochlear Implant Users. Otology and Neurotology, 2013, 34, 1041-1047.	1.3	19
68	Perceptual Learning of Interrupted Speech. PLoS ONE, 2013, 8, e58149.	2.5	18
69	Audiovisual Perception of Congruent and Incongruent Dutch Front Vowels. Journal of Speech, Language, and Hearing Research, 2012, 55, 1788-1801.	1.6	10
70	Temporal target integration underlies performance at lag 1 in the attentional blink Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1448-1464.	0.9	64
71	Effects of low-pass filtering on intelligibility of periodically interrupted speech. Journal of the Acoustical Society of America, 2012, 131, EL87-EL92.	1.1	16
72	Musical background not associated with self-perceived hearing performance or speech perception in postlingual cochlear-implant users. Journal of the Acoustical Society of America, 2012, 132, 1009-1016.	1.1	17

#	Article	IF	CITATIONS
73	Hearing an Illusory Vowel in Noise: Suppression of Auditory Cortical Activity. Journal of Neuroscience, 2012, 32, 8024-8034.	3.6	39
74	Effect of Speech Degradation on Top-Down Repair: Phonemic Restoration with Simulations of Cochlear Implants and Combined Electric–Acoustic Stimulation. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 683-692.	1.8	53
75	Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time. PLoS ONE, 2012, 7, e48739.	2.5	347
76	Audiovisual Asynchrony Detection and Speech Intelligibility in Noise With Moderate to Severe Sensorineural Hearing Impairment. Ear and Hearing, 2011, 32, 582-592.	2.1	35
77	Recognition of interrupted sentences under conditions of spectral degradation. Journal of the Acoustical Society of America, 2010, 127, EL37-EL41.	1.1	36
78	Phonemic restoration in sensorineural hearing loss does not depend on baseline speech perception scores. Journal of the Acoustical Society of America, 2010, 128, EL169-EL174.	1.1	23
79	Phonemic restoration by hearing-impaired listeners with mild to moderate sensorineural hearing loss. Hearing Research, 2010, 260, 54-62.	2.0	40
80	Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech. Hearing Research, 2010, 270, 127-133.	2.0	28
81	Effects of envelope discontinuities on perceptual restoration of amplitude-compressed speech. Journal of the Acoustical Society of America, 2009, 125, 3995-4005.	1.1	23
82	Evoked cortical activity and speech recognition as a function of the number of simulated cochlear implant channels. Clinical Neurophysiology, 2009, 120, 776-782.	1.5	19
83	Genetic algorithms: Are they the future of hearing aid fittings?. Hearing Journal, 2008, 61, 16.	0.1	3
84	Using Genetic Algorithms with Subjective Input from Human Subjects: Implications for Fitting Hearing Aids and Cochlear Implants. Ear and Hearing, 2007, 28, 370-380.	2.1	22
85	Combined Effects of Frequency Compression-Expansion and Shift on Speech Recognition. Ear and Hearing, 2007, 28, 277-289.	2.1	39
86	Simulating listener errors in using genetic algorithms for perceptual optimization. Journal of the Acoustical Society of America, 2007, 121, EL238.	1.1	2
87	Speech recognition in normal hearing and sensorineural hearing loss as a function of the number of spectral channels. Journal of the Acoustical Society of America, 2006, 120, 2908-2925.	1.1	70
88	Frequency transposition around dead regions simulated with a noiseband vocoder. Journal of the Acoustical Society of America, 2006, 119, 1156.	1.1	33
89	Interactions between cochlear implant electrode insertion depth and frequency-place mapping. Journal of the Acoustical Society of America, 2005, 117, 1405-1416.	1.1	107
90	Frequency-place compression and expansion in cochlear implant listeners. Journal of the Acoustical Society of America, 2004, 116, 3130-3140.	1.1	61

#	Article	IF	CITATIONS
91	Speech recognition under conditions of frequency-place compression and expansion. Journal of the Acoustical Society of America, 2003, 113, 2064-2076.	1.1	92
92	Holes in Hearing. JARO - Journal of the Association for Research in Otolaryngology, 2002, 3, 185-199.	1.8	76
93	Morphological surface profile extraction with multiple range sensors. Pattern Recognition, 2001, 34, 1459-1467.	8.1	7
94	Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. Journal of the Acoustical Society of America, 2001, 110, 1150-1163.	1.1	888
95	Map Building from Range Data Using Mathematical Morphology. World Scientific Series in Robotics and Intelligent Systems, 2001, , 111-135.	0.1	2
96	Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements. Measurement Science and Technology, 2000, 11, 833-844.	2.6	16