Ping Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534644/publications.pdf

Version: 2024-02-01

		218677	138484
75	3,422	26	58
papers	citations	h-index	g-index
75	75	75	2204
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Hybrid Multi-Domain Index Modulation for Covert Communication. IEEE Wireless Communications Letters, 2022, 11, 8-12.	5.0	5
2	Power Allocation-Aided Enhanced SM-OFDM: Closed-Form Solutions and Experimental Results. IEEE Transactions on Vehicular Technology, 2022, 71, 2146-2151.	6.3	3
3	Distributed Learning for Wireless Communications: Methods, Applications and Challenges. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 326-342.	10.8	13
4	Editorial: Introduction to the Issue on Distributed Machine Learning for Wireless Communication. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 320-325.	10.8	0
5	Spatial Modulation for RIS-Assisted Uplink Communication: Joint Power Allocation and Passive Beamforming Design. IEEE Transactions on Communications, 2021, 69, 7017-7031.	7.8	21
6	Transmit Antenna Selection for Full-Duplex Spatial Modulation Based on Machine Learning. IEEE Transactions on Vehicular Technology, 2021, 70, 10695-10708.	6.3	12
7	A Novel Hybrid Code-Domain Index Modulation. IEEE Communications Letters, 2021, , 1-1.	4.1	1
8	Adaptive Spatial Scattering Modulation. IEEE Transactions on Wireless Communications, 2021, 20, 6680-6690.	9.2	4
9	Precoded Optical Spatial Modulation for Indoor Visible Light Communications. IEEE Transactions on Communications, 2021, 69, 2518-2531.	7.8	4
10	Multi-Dimensional Polarized Modulation for Land Mobile Satellite Communications. IEEE Transactions on Cognitive Communications and Networking, 2021, 7, 383-397.	7.9	10
11	Enhanced Space-Domain Index Modulation Based mmWave Communication For Industrial Control. , 2021, , .		0
12	An Experimental Investigation of Enhanced SM-OFDM Over Indoor Rician Multipath Channels. IEEE Transactions on Vehicular Technology, 2020, 69, 2291-2295.	6.3	6
13	Large Intelligent Surface Assisted Wireless Communications With Spatial Modulation and Antenna Selection. IEEE Journal on Selected Areas in Communications, 2020, 38, 2562-2574.	14.0	65
14	Space-Domain Index Modulation for mmWave Cloud Radio Access Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 6215-6229.	6.3	5
15	Covert Information Embedded Spatial Modulation. IEEE Communications Letters, 2020, 24, 2426-2430.	4.1	8
16	Hybrid Beamforming/Combining for Millimeter Wave MIMO: A Machine Learning Approach. IEEE Transactions on Vehicular Technology, 2020, 69, 11353-11368.	6.3	25
17	Generalized Space Domain Index Modulation for mmWave Distributed Antenna Systems. IEEE Transactions on Vehicular Technology, 2020, 69, 14067-14071.	6.3	2
18	UAV-Aided Two-Way Relaying for Wireless Communications of Intelligent Robot Swarms. IEEE Access, 2020, 8, 56141-56150.	4.2	14

#	Article	IF	CITATIONS
19	Cross Z-Complementary Pairs for Optimal Training in Spatial Modulation Over Frequency Selective Channels. IEEE Transactions on Signal Processing, 2020, 68, 1529-1543.	5.3	16
20	Adaptive Spatial Modulation MIMO Based on Machine Learning. IEEE Journal on Selected Areas in Communications, 2019, 37, 2117-2131.	14.0	70
21	6G Wireless Communications: Vision and Potential Techniques. IEEE Network, 2019, 33, 70-75.	6.9	657
22	Space-Time Block Coded Rectangular Differential Spatial Modulation: System Design and Performance Analysis. IEEE Transactions on Communications, 2019, 67, 6586-6597.	7.8	14
23	Joint Iterative Channel Estimation and Frequency-Domain Turbo Equalization for Single-Carrier Spatial Modulation. IEEE Transactions on Communications, 2019, 67, 6327-6342.	7.8	5
24	Space-Time/Frequency Line Coded OFDM: System Design and Practical Implementation. IEEE Access, 2019, 7, 151915-151928.	4.2	22
25	Iterative Compensation for Clipping Noise in Spatial Modulation OFDM Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 12422-12426.	6.3	10
26	Approximate Message Passing Detector Based Upon Probability Sorting for Large-Scale GSM Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 9303-9307.	6.3	3
27	Priori-Aided Detection for Generalized Space-and-Frequency Index Modulation Systems With Multi-Carrier Frequency Offset. IEEE Transactions on Vehicular Technology, 2019, 68, 10330-10334.	6.3	1
28	Enhanced Receive Spatial Modulation Based on Power Allocation. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 1312-1325.	10.8	15
29	Dynamic Social-Aware Computation Offloading for Low-Latency Communications in IoT. IEEE Internet of Things Journal, 2019, 6, 7864-7877.	8.7	24
30	NOMA-Aided Precoded Spatial Modulation for Downlink MIMO Transmissions. IEEE Journal on Selected Topics in Signal Processing, 2019, 13, 729-738.	10.8	37
31	Antenna selection for MIMO system based on pattern recognition. Digital Communications and Networks, 2019, 5, 34-39.	5.0	24
32	Generalized Approximate Message Passing Aided Frequency Domain Turbo Equalizer for Single-Carrier Spatial Modulation. IEEE Transactions on Vehicular Technology, 2018, 67, 3630-3634.	6.3	15
33	Compressed-Sensing Assisted Spatial Multiplexing Aided Spatial Modulation. IEEE Transactions on Wireless Communications, 2018, 17, 794-807.	9.2	34
34	Power Allocation for Pre-Coding-Aided Spatial Modulation. IEEE Communications Letters, 2018, 22, 1094-1097.	4.1	14
35	Single-RF and Twin-RF Spatial Modulation for an Arbitrary Number of Transmit Antennas. IEEE Transactions on Vehicular Technology, 2018, 67, 6311-6324.	6.3	19
36	Efficient Receive Antenna Selection for Pre-Coding Aided Spatial Modulation. IEEE Communications Letters, 2018, 22, 416-419.	4.1	17

#	Article	IF	Citations
37	Improved Layered Message Passing Algorithms for Large-Scale Generalized Spatial Modulation Systems. IEEE Wireless Communications Letters, 2018, 7, 66-69.	5.0	13
38	Performance Analysis for the ${N}$ -Continuous Precoded SM-OFDM System. IEEE Transactions on Vehicular Technology, 2018, 67, 483-493.	6.3	5
39	MMSE-based Detector for Spatial Modulation OFDM Systems with Multiple CFOs. , 2018, , .		3
40	Unified Power Allocation for Receive Spatial Modulation Based on Approximate Optimization. IEEE Access, 2018, 6, 49450-49459.	4.2	5
41	Low RF-Complexity Receive Spatial Modulation for Millimeter-Wave MIMO Communications. IEEE Communications Letters, 2018, 22, 1338-1341.	4.1	19
42	Soft-Feedback Time-Domain Turbo Equalization for Single-Carrier Generalized Spatial Modulation. IEEE Transactions on Vehicular Technology, 2018, 67, 9421-9434.	6.3	8
43	Space-Time Block Coded Rectangular Differential Spatial Modulation. , 2018, , .		6
44	Multidomain Index Modulation for Vehicular and Railway Communications: A Survey of Novel Techniques. IEEE Vehicular Technology Magazine, 2018, 13, 124-134.	3.4	39
45	Efficient Compressive Sensing Detectors for Generalized Spatial Modulation Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 1284-1298.	6.3	100
46	An Improved Frequency Domain Turbo Equalizer for Single-Carrier Spatial Modulation Systems. IEEE Transactions on Vehicular Technology, 2017, 66, 7568-7572.	6.3	10
47	Adaptive SM-MIMO for mmWave Communications With Reduced RF Chains. IEEE Journal on Selected Areas in Communications, 2017, 35, 1472-1485.	14.0	37
48	Transmit Antenna Selection Schemes for Spatial Modulation Systems: Search Complexity Reduction and Large-Scale MIMO Applications. IEEE Transactions on Vehicular Technology, 2017, 66, 8010-8021.	6.3	46
49	Space-Time Block Coded Differential Spatial Modulation. IEEE Transactions on Vehicular Technology, 2017, 66, 8821-8834.	6.3	34
50	Time-Domain Turbo Equalization for Single-Carrier Generalized Spatial Modulation. IEEE Transactions on Wireless Communications, 2017, 16, 5702-5716.	9.2	22
51	An Improved Hybrid Turbo Equalizer for Single Carrier Transmission with Impulsive Noise and ISI. IEEE Transactions on Vehicular Technology, 2017, 66, 9852-9861.	6.3	6
52	Blind Detection for Spatial Modulation Systems Based on Clustering. IEEE Communications Letters, 2017, 21, 2392-2395.	4.1	15
53	Efficient Detection of Spatial Modulation OFDM Systems With Multiple Carrier Frequency Offsets. IEEE Communications Letters, 2017, 21, 426-429.	4.1	12
54	High-Rate APSK-Aided Differential Spatial Modulation: Design Method and Performance Analysis. IEEE Communications Letters, 2017, 21, 168-171.	4.1	35

#	Article	IF	CITATIONS
55	Transmit Antenna Selection for Multiple-Input Multiple-Output Spatial Modulation Systems. IEEE Transactions on Communications, 2016, 64, 2035-2048.	7.8	60
56	Error Probability Analysis of OFDM-IM With Carrier Frequency Offset. IEEE Communications Letters, 2016, 20, 2434-2437.	4.1	43
57	Low-complexity tree search-based detection algorithms for generalized spatial modulation aided single carrier systems. , 2016, , .		11
58	Low-Complexity Signal Detection for Large-Scale Quadrature Spatial Modulation Systems. IEEE Communications Letters, 2016, 20, 2173-2176.	4.1	25
59	A Low-Complexity Power Allocation Algorithm for Multiple-Input–Multiple-Output Spatial Modulation Systems. IEEE Transactions on Vehicular Technology, 2016, 65, 1819-1825.	6.3	30
60	An Improved Soft-Input Soft-Output Detector for Generalized Spatial Modulation. IEEE Signal Processing Letters, 2016, 23, 30-34.	3.6	25
61	Single-Carrier SM-MIMO: A Promising Design for Broadband Large-Scale Antenna Systems. IEEE Communications Surveys and Tutorials, 2016, 18, 1687-1716.	39.4	200
62	Transmit Precoded Spatial Modulation: Maximizing the Minimum Euclidean Distance Versus Minimizing the Bit Error Ratio. IEEE Transactions on Wireless Communications, 2016, 15, 2054-2068.	9.2	100
63	Hybrid Bit-to-Symbol Mapping for Spatial Modulation. IEEE Transactions on Vehicular Technology, 2016, 65, 5804-5810.	6. 3	20
64	Power Allocation-Aided Spatial Modulation for Limited-Feedback MIMO Systems. IEEE Transactions on Vehicular Technology, 2015, 64, 2198-2204.	6.3	112
65	A Low-Complexity Detection Scheme for Differential Spatial Modulation. IEEE Communications Letters, 2015, 19, 1516-1519.	4.1	41
66	A Low-Complexity Detection Scheme for Generalized Spatial Modulation Aided Single Carrier Systems. IEEE Communications Letters, 2015, 19, 1069-1072.	4.1	25
67	Design Guidelines for Spatial Modulation. IEEE Communications Surveys and Tutorials, 2015, 17, 6-26.	39.4	516
68	Low-Complexity Signal Detection for Generalized Spatial Modulation. IEEE Communications Letters, 2014, 18, 403-406.	4.1	124
69	Star-QAM Signaling Constellations for Spatial Modulation. IEEE Transactions on Vehicular Technology, 2014, 63, 3741-3749.	6.3	68
70	Simplified Adaptive Spatial Modulation for Limited-Feedback MIMO Systems. IEEE Transactions on Vehicular Technology, 2013, 62, 2656-2666.	6.3	37
71	A New Low-Complexity Near-ML Detection Algorithm for Spatial Modulation. IEEE Wireless Communications Letters, 2013, 2, 90-93.	5.0	69
72	Link Adaptation for Spatial Modulation With Limited Feedback. IEEE Transactions on Vehicular Technology, 2012, 61, 3808-3813.	6.3	121

PING YANG

#	Article	IF	CITATIONS
73	An Improved Matched-Filter Based Detection Algorithm for Space-Time Shift Keying Systems. IEEE Signal Processing Letters, 2012, 19, 271-274.	3.6	31
74	An Iterative CFO Compensation Algorithm for Distributed Spatial Modulation OFDM Systems. , $2011, \ldots$		9
75	Adaptive Spatial Modulation for Wireless MIMO Transmission Systems. IEEE Communications Letters, 2011, 15, 602-604.	4.1	145