Yair Argon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553451/publications.pdf

Version: 2024-02-01

471509 580821 1,564 29 17 25 citations h-index g-index papers 29 29 29 2479 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An interdomain helix in IRE1 $\hat{1}$ ± mediates the conformational change required for the sensor's activation. Journal of Biological Chemistry, 2021, 296, 100781.	3.4	5
2	The Sensor IRE1 Couples Stress Detection to Protein Synthesis. FASEB Journal, 2021, 35, .	0.5	O
3	The special unfolded protein response in plasma cells. Immunological Reviews, 2021, 303, 35-51.	6.0	13
4	Glucose-Regulated Protein 94 (GRP94): A Novel Regulator of Insulin-Like Growth Factor Production. Cells, 2020, 9, 1844.	4.1	16
5	mTORC1 coordinates an immediate unfolded protein response-related transcriptome in activated B cells preceding antibody secretion. Nature Communications, 2020, 11, 723.	12.8	72
6	The connector between the kinase and RNase domains of IRE1 \hat{l} ± differentially controls the activities of this stress sensor. FASEB Journal, 2020, 34, 1-1.	0.5	0
7	Quality Control across Compartments—Connecting ERAD with Ribosomal Quality Control. Journal of Molecular Biology, 2019, 431, 142-144.	4.2	0
8	Clustering of IRE1α depends on sensing ER stress but not on its RNase activity. FASEB Journal, 2019, 33, 9811-9827.	0.5	33
9	Long Interleukin-22 Binding Protein Isoform-1 Is an Intracellular Activator of the Unfolded Protein Response. Frontiers in Immunology, 2018, 9, 2934.	4.8	11
10	Tyrosine 870 of TLR9 is critical for receptor maturation rather than phosphorylation-dependent ligand-induced signaling. PLoS ONE, 2018, 13, e0200913.	2.5	1
11	CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Molecular and Cellular Biology, 2018, 38, .	2.3	55
12	mRNA splicing is attenuated under prolonged exposure to ER stress. MicroPublication Biology, 2017, 2017, .	0.1	1
13	Tay–Sachs disease mutations in HEXA target the α chain of hexosaminidase A to endoplasmic reticulum–associated degradation. Molecular Biology of the Cell, 2016, 27, 3813-3827.	2.1	38
14	A Human Variant of Glucose-Regulated Protein 94 That Inefficiently Supports IGF Production. Endocrinology, 2016, 157, 1914-1928.	2.8	19
15	PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB Journal, 2016, 30, 653-665.	0.5	60
16	Inhibition of Cytohesins Protects against Genetic Models of Motor Neuron Disease. Journal of Neuroscience, 2015, 35, 9088-9105.	3.6	20
17	Inhibiting cytosolic translation and autophagy improves health in mitochondrial disease. Human Molecular Genetics, 2015, 24, 4829-4847.	2.9	64
18	Candidate Genes That Affect Aging Through Protein Homeostasis. Advances in Experimental Medicine and Biology, 2015, 847, 45-72.	1.6	7

#	Article	IF	CITATION
19	The Nâ€terminal Box 1 Tyrosine in the TIR Domain of TLR9 is Critical for Endoplasmic Reticulum Egress and Maturation of the Receptor. FASEB Journal, 2015, 29, 888.19.	0.5	0
20	OS-9 facilitates turnover of nonnative GRP94 marked by hyperglycosylation. Molecular Biology of the Cell, 2014, 25, 2220-2234.	2.1	30
21	Protein Disulfide Isomerase A6 Controls the Decay of IRE1α Signaling via Disulfide-Dependent Association. Molecular Cell, 2014, 53, 562-576.	9.7	186
22	Redox controls UPR to control redox. Journal of Cell Science, 2014, 127, 3649-58.	2.0	136
23	Orchestration of secretory protein folding by ER chaperones. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2410-2424.	4.1	113
24	Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response. Journal of Cell Science, 2012, 125, 4865-75.	2.0	31
25	An essential role for ATP binding and hydrolysis in the chaperone activity of GRP94 in cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11600-11605.	7.1	61
26	Hsp70 and Antifibrillogenic Peptides Promote Degradation and Inhibit Intracellular Aggregation of Amyloidogenic Light Chains. Journal of Cell Biology, 2001, 152, 705-716.	5.2	69
27	Molecular chaperones and the biosynthesis of antigen receptors. Trends in Immunology, 1995, 16, 243-250.	7.5	87
28	Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Nature, 1994, 370, 373-375.	27.8	419
29	A combination of two immunotoxins exerts synergistic cytotoxic activity against human breast-cancer cell lines. International Journal of Cancer. 1992, 51, 772-779.	5.1	17