Scott K Parks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534398/publications.pdf Version: 2024-02-01

SCOTT K DADKS

#	Article	IF	CITATIONS
1	Disrupting proton dynamics and energy metabolism for cancer therapy. Nature Reviews Cancer, 2013, 13, 611-623.	28.4	530
2	pH control mechanisms of tumor survival and growth. Journal of Cellular Physiology, 2011, 226, 299-308.	4.1	298
3	Genetic Ablation of the Cystine Transporter xCT in PDAC Cells Inhibits mTORC1, Growth, Survival, and Tumor Formation via Nutrient and Oxidative Stresses. Cancer Research, 2019, 79, 3877-3890.	0.9	148
4	Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Research, 2016, 76, 4481-4492.	0.9	143
5	The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5). Journal of Biological Chemistry, 2018, 293, 2877-2887.	3.4	131
6	Hypoxia and cellular metabolism in tumour pathophysiology. Journal of Physiology, 2017, 595, 2439-2450.	2.9	126
7	The Na ⁺ /HCO ₃ ^{â^'} Co-Transporter SLC4A4 Plays a Role in Growth and Migration of Colon and Breast Cancer Cells. Journal of Cellular Physiology, 2015, 230, 1954-1963.	4.1	84
8	The Central Role of Amino Acids in Cancer Redox Homeostasis: Vulnerability Points of the Cancer Redox Code. Frontiers in Oncology, 2017, 7, 319.	2.8	79
9	Disrupting the â€~Warburg effect' re-routes cancer cells to OXPHOS offering a vulnerability point via â€~ferroptosis'-induced cell death. Advances in Biological Regulation, 2018, 68, 55-63.	2.3	66
10	Knock-down of hypoxia-induced carbonic anhydrases IX and XII radiosensitizes tumor cells by increasing intracellular acidosis. Frontiers in Oncology, 2013, 2, 199.	2.8	61
11	Hypoxia optimises tumour growth by controlling nutrient import and acidic metabolite export. Molecular Aspects of Medicine, 2016, 47-48, 3-14.	6.4	55
12	Hypoxia promotes tumor cell survival in acidic conditions by preserving ATP levels. Journal of Cellular Physiology, 2013, 228, 1854-1862.	4.1	53
13	Targeting pH regulating proteins for cancer therapy–Progress and limitations. Seminars in Cancer Biology, 2017, 43, 66-73.	9.6	48
14	Genetic disruption of the pHi-regulating proteins Na+/H+ exchanger 1 (SLC9A1) and carbonic anhydrase 9 severely reduces growth of colon cancer cells. Oncotarget, 2017, 8, 10225-10237.	1.8	46
15	Amino Acid Transporters Are a Vital Focal Point in the Control of mTORC1 Signaling and Cancer. International Journal of Molecular Sciences, 2021, 22, 23.	4.1	26