Lambert Jan Anton Koster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5534281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	12.2	8
2	Understanding the Limitations of Charge Transporting Layers in Mixed Lead–Tin Halide Perovskite Solar Cells. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	13
3	Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient Nâ€Type Organic Thermoelectrics. Advanced Materials, 2021, 33, e2006694.	21.0	91
4	Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals. Physical Review Applied, 2021, 15, .	3.8	30
5	Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS Energy Letters, 2021, 6, 1087-1094.	17.4	254
6	Identification of the dominant recombination process for perovskite solar cells based on machine learning. Cell Reports Physical Science, 2021, 2, 100346.	5.6	21
7	Controlling n-Type Molecular Doping <i>via</i> Regiochemistry and Polarity of Pendant Groups on Low Band Gap Donor–Acceptor Copolymers. Macromolecules, 2021, 54, 3886-3896.	4.8	31
8	Engineering the Thermoelectrical Properties of PEDOT:PSS by Alkali Metal Ion Effect. Engineering, 2021, 7, 647-654.	6.7	7
9	Molecular Doping Directed by a Neutral Radical. ACS Applied Materials & Interfaces, 2021, 13, 29858-29865.	8.0	12
10	Carrier–carrier Coulomb interactions reduce power factor in organic thermoelectrics. Applied Physics Letters, 2021, 119, 143301.	3.3	2
11	Toward Understanding Space-Charge Limited Current Measurements on Metal Halide Perovskites. ACS Energy Letters, 2020, 5, 376-384.	17.4	211
12	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	12.8	204
13	Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 56231-56239.	8.0	15
14	N-type organic thermoelectrics: demonstration of ZT > 0.3. Nature Communications, 2020, 11, 5694.	12.8	98
15	Can Ferroelectricity Improve Organic Solar Cells?. Macromolecular Rapid Communications, 2020, 41, e2000124.	3.9	4
16	15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy and Environmental Science, 2020, 13, 2134-2141.	30.8	218
17	Protonic acid doping of low band-gap conjugated polyions. Materials Chemistry Frontiers, 2020, 4, 3585-3593.	5.9	3
18	Reaching a Double-Digit Dielectric Constant with Fullerene Derivatives. Journal of Physical Chemistry	3.1	13

#	Article	IF	CITATIONS
19	Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier–Carrier Interactions. ACS Applied Materials & Interfaces, 2020, 12, 56222-56230.	8.0	32
20	Doping Engineering Enables Highly Conductive and Thermally Stable n-Type Organic Thermoelectrics with High Power Factor. ACS Applied Energy Materials, 2019, 2, 6664-6671.	5.1	38
21	Charge Transport Layers Limiting the Efficiency of Perovskite Solar Cells: How To Optimize Conductivity, Doping, and Thickness. ACS Applied Energy Materials, 2019, 2, 6280-6287.	5.1	110
22	Voltage-Dependent Photoluminescence and How It Correlates with the Fill Factor and Open-Circuit Voltage in Perovskite Solar Cells. ACS Energy Letters, 2019, 4, 2887-2892.	17.4	86
23	Photostability of Fullerene and Non-Fullerene Polymer Solar Cells: The Role of the Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 8310-8318.	8.0	91
24	Overcoming Coulomb Interaction Improves Free-Charge Generation and Thermoelectric Properties for n-Doped Conjugated Polymers. ACS Energy Letters, 2019, 4, 1556-1564.	17.4	110
25	Energy level modulation of ITIC derivatives: Effects on the photodegradation of conventional and inverted organic solar cells. Organic Electronics, 2019, 69, 255-262.	2.6	31
26	1,8-diiodooctane acts as a photo-acid in organic solar cells. Scientific Reports, 2019, 9, 4350.	3.3	50
27	Improved photostability in ternary blend organic solar cells: the role of [70]PCBM. Journal of Materials Chemistry C, 2019, 7, 5104-5111.	5.5	46
28	The Effect of Electrostatic Interaction on n‶ype Doping Efficiency of Fullerene Derivatives. Advanced Electronic Materials, 2019, 5, 1800959.	5.1	15
29	Conjugated Polyions Enable Organic Photovoltaics Processed from Green Solvents. ACS Applied Energy Materials, 2019, 2, 2197-2204.	5.1	13
30	Reliability of charge carrier recombination data determined with charge extraction methods. Journal of Applied Physics, 2019, 126, .	2.5	13
31	Effects of the Reduction and/or Fluorination of the TTâ€Units in BDTâ€TT Polymers on the Photostability of Polymer:Fullerene Solar Cells. Solar Rrl, 2019, 3, 1800301.	5.8	9
32	Enhancing Molecular nâ€Type Doping of Donor–Acceptor Copolymers by Tailoring Side Chains. Advanced Materials, 2018, 30, 1704630.	21.0	217
33	Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Letters, 2018, 3, 278-285.	17.4	220
34	Impact of Electrodes on Recombination in Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 12013-12020.	8.0	12
35	Highly Reproducible Snâ€Based Hybrid Perovskite Solar Cells with 9% Efficiency. Advanced Energy Materials, 2018, 8, 1702019	19.5	726
36	Organic Photovoltaics. Advanced Energy Materials, 2018, 8, 1802706.	19.5	7

#	Article	IF	CITATIONS
37	Bilayer–Ternary Polymer Solar Cells Fabricated Using Spontaneous Spreading on Water. Advanced Energy Materials, 2018, 8, 1802197.	19.5	26
38	Response to Comment on "Charge Carrier Extraction in Organic Solar Cells Governed by Steadyâ€State Mobilities― Advanced Energy Materials, 2018, 8, 1803125.	19.5	3
39	Nâ€Type Organic Thermoelectrics of Donor–Acceptor Copolymers: Improved Power Factor by Molecular Tailoring of the Density of States. Advanced Materials, 2018, 30, e1804290.	21.0	161
40	Side-chain effects on N-type organic thermoelectrics: A case study of fullerene derivatives. Nano Energy, 2018, 52, 183-191.	16.0	45
41	Improving Perovskite Solar Cells: Insights From a Validated Device Model. Advanced Energy Materials, 2017, 7, 1602432.	19.5	132
42	Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Letters, 2017, 2, 1214-1222.	17.4	826
43	Relating polymer chemical structure to the stability of polymer:fullerene solar cells. Journal of Materials Chemistry C, 2017, 5, 6611-6619.	5.5	41
44	Charge Carrier Extraction in Organic Solar Cells Governed by Steady tate Mobilities. Advanced Energy Materials, 2017, 7, 1701138.	19.5	56
45	Enhancing doping efficiency by improving host-dopant miscibility for fullerene-based n-type thermoelectrics. Journal of Materials Chemistry A, 2017, 5, 21234-21241.	10.3	73
46	Efficient Perovskite Solar Cells over a Broad Temperature Window: The Role of the Charge Carrier Extraction. Advanced Energy Materials, 2017, 7, 1701305.	19.5	52
47	Nâ€Type Organic Thermoelectrics: Improved Power Factor by Tailoring Host–Dopant Miscibility. Advanced Materials, 2017, 29, 1701641.	21.0	131
48	Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors. ACS Applied Materials & Interfaces, 2017, 9, 27290-27297.	8.0	30
49	Compatibility of PTB7 and [70]PCBM as a Key Factor for the Stability of PTB7:[70]PCBM Solar Cells. Advanced Energy Materials, 2016, 6, 1502338.	19.5	35
50	The Effect of the Microstructure on Trapâ€Assisted Recombination and Light Soaking Phenomenon in Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2016, 26, 8094-8102.	14.9	108
51	Deposition of LiF onto Films of Fullerene Derivatives Leads to Bulk Doping. ACS Applied Materials & Interfaces, 2016, 8, 22623-22628.	8.0	19
52	A New Figure of Merit for Organic Solar Cells with Transport-limited Photocurrents. Scientific Reports, 2016, 6, 24861.	3.3	98
53	Effect of the layer thickness on the efficiency enhancement in bilayer polymer light-emitting diodes. Synthetic Metals, 2016, 215, 64-67.	3.9	5
54	Charge Recombination Suppressed by Destructive Quantum Interference in Heterojunction Materials. Journal of Physical Chemistry Letters, 2016, 7, 198-203.	4.6	10

#	Article	IF	CITATIONS
55	Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells?. Physical Chemistry Chemical Physics, 2016, 18, 331-338.	2.8	69
56	Effect of Solvent Additive on Generation, Recombination, and Extraction in PTB7:PCBM Solar Cells: A Conclusive Experimental and Numerical Simulation Study. Journal of Physical Chemistry C, 2015, 119, 8310-8320.	3.1	96
57	High Gain Hybrid Graphene–Organic Semiconductor Phototransistors. ACS Applied Materials & Interfaces, 2015, 7, 11083-11088.	8.0	65
58	Dielectric Effects at Organic/Inorganic Interfaces in Nanostructured Devices. ACS Applied Materials & Interfaces, 2015, 7, 11881-11889.	8.0	15
59	Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nature Communications, 2015, 6, 7083.	12.8	517
60	Experimental and theoretical study of phase separation in ZnPc:C60 blends. Organic Electronics, 2015, 27, 183-191.	2.6	5
61	Cross-Conjugated n-Dopable Aromatic Polyketone. Macromolecules, 2015, 48, 7007-7014.	4.8	14
62	The Effect of Large Compositional Inhomogeneities on the Performance of Organic Solar Cells: A Numerical Study. Advanced Functional Materials, 2015, 25, 2013-2023.	14.9	12
63	Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility. Advanced Functional Materials, 2015, 25, 150-157.	14.9	178
64	A Conclusive View on Charge Generation, Recombination, and Extraction in Asâ€Prepared and Annealed P3HT:PCBM Blends: Combined Experimental and Simulation Work. Advanced Energy Materials, 2014, 4, 1301401.	19.5	104
65	Fullerene derivatives with increased dielectric constants. Chemical Communications, 2014, 50, 10645-10647.	4.1	84
66	Charge transport and recombination in PDPP5T:[70]PCBM organic solar cells: The influence of morphology. Organic Electronics, 2014, 15, 3191-3202.	2.6	23
67	Modern plastic solar cells: materials, mechanisms and modeling. Materials Today, 2013, 16, 281-289.	14.2	64
68	Quantifying Bimolecular Recombination in Organic Solar Cells in Steady State. Advanced Energy Materials, 2013, 3, 1130-1134.	19.5	65
69	Influence of injected charge carriers on photocurrents in polymer solar cells. Physical Review B, 2012, 85, .	3.2	47
70	A New Approach to Modelâ€Based Simulation of Disordered Polymer Blend Solar Cells. Advanced Functional Materials, 2012, 22, 1236-1244.	14.9	25
71	Pathways to a New Efficiency Regime for Organic Solar Cells. Advanced Energy Materials, 2012, 2, 1246-1253.	19.5	343
72	Non-radiative recombination losses in polymer light-emitting diodes. Organic Electronics, 2012, 13, 969-974.	2.6	49

#	Article	IF	CITATIONS
73	Scaling Theory for Percolative Charge Transport in Disordered Molecular Semiconductors. Physical Review Letters, 2011, 107, 136601.	7.8	101
74	Trap-Assisted Recombination in Disordered Organic Semiconductors. Physical Review Letters, 2011, 107, 256805.	7.8	260
75	Discriminating between Bilayer and Bulk Heterojunction Polymer:Fullerene Solar Cells Using the External Quantum Efficiency. ACS Applied Materials & Interfaces, 2011, 3, 3252-3255.	8.0	99
76	Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells. Advanced Materials, 2011, 23, 1670-1674.	21.0	328
77	Controlling the Morphology and Efficiency of Hybrid ZnO:Polythiophene Solar Cells Via Side Chain Functionalization. Advanced Energy Materials, 2011, 1, 90-96.	19.5	80
78	A MULTISCALE APPROACH TO THE REPRESENTATION OF 3D IMAGES, WITH APPLICATION TO POLYMER SOLAR CELLS. Image Analysis and Stereology, 2011, 30, 19.	0.9	8
79	Charge carrier mobility in disordered organic blends. Proceedings of SPIE, 2010, , .	0.8	0
80	The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Materials, 2009, 8, 818-824.	27.5	511
81	Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells. Journal of Applied Physics, 2007, 101, 104512.	2.5	43
82	Optimum charge carrier mobility in organic solar cells. Applied Physics Letters, 2007, 90, 133504.	3.3	217
83	Hybrid Polymer Solar Cells from Highly Reactive Diethylzinc: MDMO–PPV versus P3HT. Chemistry of Materials, 2007, 19, 5856-5861.	6.7	84
84	Device Operation of Conjugated Polymer/Zinc Oxide Bulk Heterojunction Solar Cells. Advanced Functional Materials, 2007, 17, 1297-1302.	14.9	77
85	Origin of the Reduced Fill Factor and Photocurrent in MDMOâ€PPV:PCNEPV Allâ€Polymer Solar Cells. Advanced Functional Materials, 2007, 17, 2167-2173.	14.9	280
86	Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 2007, 19, 1551-1566.	21.0	2,000
87	Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Applied Physics Letters, 2006, 89, 012107.	3.3	222
88	Charge Transport and Photocurrent Generation in Poly(3-hexylthiophene): Methanofullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2006, 16, 699-708.	14.9	1,235
89	Performance enhancement of poly(3- hexylthiophene): methanofullerene bulk-heterojunction solar cells. , 2006, 6334, 27.		2
90	Modeling of poly(3-hexylthiophene): methanofullerene bulk-heterojunction solar cells. , 2006, , .		0

#	Article	IF	CITATIONS
91	Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells. Applied Physics Letters, 2006, 88, 243502.	3.3	166
92	Compositional Dependence of the Performance of Poly(p-phenylene vinylene):Methanofullerene Bulk-Heterojunction Solar Cells. Advanced Functional Materials, 2005, 15, 795-801.	14.9	383
93	Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells. Applied Physics Letters, 2005, 87, 203502.	3.3	569
94	Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells. Applied Physics Letters, 2005, 86, 123509.	3.3	1,145
95	Extraction of photo-generated charge carriers from polymer-fullerene bulk heterojunction solar cells. , 2004, 5464, 239.		0
96	Photocurrent Generation in Polymer-Fullerene Bulk Heterojunctions. Physical Review Letters, 2004, 93, 216601.	7.8	922
97	Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells. Applied Physics Letters, 2004, 85, 970-972.	3.3	134