Sanjana Dayal, Faha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/553412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNase 1 Protects From Increased Thrombin Generation and Venous Thrombosis During Aging: Cross ectional Study in Mice and Humans. Journal of the American Heart Association, 2022, 11, e021188.	3.7	12
2	Redox Mechanisms of Platelet Activation in Aging. Antioxidants, 2022, 11, 995.	5.1	4
3	The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. International Journal of Molecular Sciences, 2022, 23, 7837.	4.1	9
4	Thrombotic potential during pediatric acute lymphoblastic leukemia induction: Role of cellâ€free DNA. Research and Practice in Thrombosis and Haemostasis, 2021, 5, e12557.	2.3	5
5	Standard prophylactic versus intermediate dose enoxaparin in adults with severe COVIDâ€19: A multiâ€center, openâ€label, randomized controlled trial. Journal of Thrombosis and Haemostasis, 2021, 19, 2225-2234.	3.8	103
6	Modulators of platelet function in aging. Platelets, 2020, 31, 474-482.	2.3	14
7	Inflammation mediated platelet hyperactivity in aging. Annals of Blood, 2020, 5, 10-10.	0.4	2
8	Glutathione peroxidaseâ€1 overexpression reduces oxidative stress, and improves pathology and proteome remodeling in the kidneys of old mice. Aging Cell, 2020, 19, e13154.	6.7	31
9	Memantine Protects From Exacerbation of Ischemic Stroke and Blood Brain Barrier Disruption in Mild But Not Severe Hyperhomocysteinemia. Journal of the American Heart Association, 2020, 9, e013368.	3.7	14
10	COVID-19-Associated Coagulopathy: Safety and Efficacy of Prophylactic Anticoagulation Therapy in Hospitalized Adults with COVID-19. Blood, 2020, 136, 11-11.	1.4	1
11	Platelet antioxidants: A conundrum in aging. EBioMedicine, 2019, 47, 29-30.	6.1	1
12	Nox2 NADPH oxidase is dispensable for platelet activation or arterial thrombosis in mice. Blood Advances, 2019, 3, 1272-1284.	5.2	34
13	RNA inhibitors of nuclear proteins responsible for multiple organ dysfunction syndrome. Nature Communications, 2019, 10, 116.	12.8	11
14	Helicopter "Drip and Ship―Flights Do Not Alter the Pharmacological Integrity of rtPA. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 2720-2724.	1.6	9
15	Dichloroacetate, an inhibitor of pyruvate dehydrogenase kinases, inhibits platelet aggregation and arterial thrombosis. Blood Advances, 2018, 2, 2029-2038.	5.2	38
16	Letter by Sonkar et al Regarding Article, "Class III PI3K Positively Regulates Platelet Activation and Thrombosis via PI(3)P-Directed Function of NADPH Oxidase― Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e25.	2.4	1
17	Staphylococcal β-Toxin Modulates Human Aortic Endothelial Cell and Platelet Function through Sphingomyelinase and Biofilm Ligase Activities. MBio, 2017, 8, .	4.1	30
18	Deficiency of superoxide dismutase promotes cerebral vascular hypertrophy and vascular dysfunction in hyperhomocysteinemia. PLoS ONE, 2017, 12, e0175732.	2.5	20

Sanjana Dayal, Faha

#	Article	IF	CITATIONS
19	the NADPH Oxidase Catalytic Subunit Nox2 Displays Differential Roles in Arterial Vs. Venous Thrombosis. Blood, 2016, 128, 4907-4907.	1.4	0
20	The Effects of Optic Atrophy Protein (OPA)-1 Deletion on Platelet Function Is Regulated By the Hormonal Milieu. Blood, 2016, 128, 410-410.	1.4	0
21	Deficiency of Superoxide Dismutase Impairs Protein C Activation and Enhances Susceptibility to Experimental Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1798-1804.	2.4	21
22	Protective Vascular and Cardiac Effects of Inducible Nitric Oxide Synthase in Mice with Hyperhomocysteinemia. PLoS ONE, 2014, 9, e107734.	2.5	17
23	Methylation and Gene Expression Responses to Ethanol Feeding and Betaine Supplementation in the Cystathionine Beta Synthase-Deficient Mouse. Alcoholism: Clinical and Experimental Research, 2014, 38, 1540-1549.	2.4	22
24	Hydrogen Peroxide Promotes Aging-Related Platelet Hyperactivation and Thrombosis. Circulation, 2013, 127, 1308-1316.	1.6	150
25	Paradoxical absence of a prothrombotic phenotype in a mouse model of severe hyperhomocysteinemia. Blood, 2012, 119, 3176-3183.	1.4	32
26	Deficiency of Superoxide Dismutase Impairs Generation of Activated Protein C and Enhances Susceptibility to Experimental Thrombosis in Mice. Blood, 2011, 118, 535-535.	1.4	2
27	Epigenetic regulation of hepatic endoplasmic reticulum stress pathways in the ethanol-fed cystathionine beta synthase-deficient mouse. Hepatology, 2010, 51, 932-941.	7.3	72
28	The Nutrigenetics of Hyperhomocysteinemia. Molecular and Cellular Proteomics, 2010, 9, 471-485.	3.8	22
29	Role of Hydrogen Peroxide and the Impact of Glutathione Peroxidase-1 in Regulation of Cerebral Vascular Tone. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 1130-1137.	4.3	30
30	Glutathione Peroxidase-1 Plays a Major Role in Protecting Against Angiotensin II–Induced Vascular Dysfunction. Hypertension, 2008, 51, 872-877.	2.7	79
31	Murine Models of Hyperhomocysteinemia and Their Vascular Phenotypes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1596-1605.	2.4	100
32	Tissue-specific downregulation of dimethylarginine dimethylaminohydrolase in hyperhomocysteinemia. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H816-H825.	3.2	52
33	Endothelial Dysfunction and Paradoxical Resistance to Thrombosis in a Transgenic Mouse Model of Severe Hyperhomocysteinemia Blood, 2008, 112, 1889-1889.	1.4	Ο
34	Testosterone regulation of renal cystathionine β-synthase: implications for sex-dependent differences in plasma homocysteine levels. American Journal of Physiology - Renal Physiology, 2007, 293, F594-F600.	2.7	47
35	Protein Phosphatase 2A Methyltransferase Links Homocysteine Metabolism with Tau and Amyloid Precursor Protein Regulation. Journal of Neuroscience, 2007, 27, 2751-2759.	3.6	216
36	Role of Redox Reactions in the Vascular Phenotype of Hyperhomocysteinemic Animals. Antioxidants and Redox Signaling, 2007, 9, 1899-1910.	5.4	24

Sanjana Dayal, Faha

#	Article	IF	CITATIONS
37	Genetic Evidence that Cerebrovascular Responses to Arachidonic Acid are Mediated by Hydrogen Peroxide Produced by SODâ€1. FASEB Journal, 2007, 21, A1384.	0.5	Ο
38	Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood, 2006, 108, 2237-2243.	1.4	85
39	ADMA and hyperhomocysteinemia. Vascular Medicine, 2005, 10, S27-S33.	1.5	62
40	Cerebral Vascular Dysfunction in Methionine Synthase–Deficient Mice. Circulation, 2005, 112, 737-744.	1.6	60
41	Association of Multiple Cellular Stress Pathways With Accelerated Atherosclerosis in Hyperhomocysteinemic Apolipoprotein E-Deficient Mice. Circulation, 2004, 110, 207-213.	1.6	193
42	Perturbations in homocysteine-linked redox homeostasis in a murine model for hyperhomocysteinemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 287, R39-R46.	1.8	96
43	Cerebral Vascular Dysfunction Mediated by Superoxide in Hyperhomocysteinemic Mice. Stroke, 2004, 35, 1957-1962.	2.0	146
44	Cerebral Vascular Dysfunction in Methionine Synthase-Deficient Mice Blood, 2004, 104, 2617-2617.	1.4	3
45	Hyperhomocysteinemic Mice Have Increased Susceptibility to Carotid Artery Thrombosis Blood, 2004, 104, 2616-2616.	1.4	2
46	Hyperhomocysteinemia, endothelial dysfunction, and cardiovascular risk: the potential role of ADMA. Atherosclerosis Supplements, 2003, 4, 61-65.	1.2	95
47	Deficiency of Glutathione Peroxidase-1 Sensitizes Hyperhomocysteinemic Mice to Endothelial Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1996-2002.	2.4	99
48	Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. Journal of Clinical Investigation, 2001, 107, 1263-1273.	8.2	619
49	Endothelial Dysfunction and Elevation of <i>S</i> -Adenosylhomocysteine in Cystathionine β-Synthase–Deficient Mice. Circulation Research, 2001, 88, 1203-1209.	4.5	202
50	Folate dependence of hyperhomocysteinemia and vascular dysfunction in cystathionine β-synthase-deficient mice. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H970-H975.	3.2	89
51	Masked polycythaemia vera in a patient with extrahepatic portal venous obstruction. European Journal of Gastroenterology and Hepatology, 1998, 10, 883-886.	1.6	5
52	Multilineage hempoietic stem cell defects in Budd Chiari syndrome. Journal of Hepatology, 1997, 26, 293-297.	3.7	35
53	Overt Polycythemia Vera after Splenopneumopexy in a Patient with Budd-Chiari Syndrome. Journal of Clinical Gastroenterology, 1997, 25, 491-492.	2.2	1
54	Tissue Plasminogen Activator and Plasminogen Activator Inhibitor Status in Budd-Chiari Syndrome. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 1996, 26, 284-287.	0.3	2

#	Article	IF	CITATIONS
55	Increased ratio of thromboxane B ₂ and 6â€keto PGF _{1α} in patients of hepatic venous outflow obstruction. European Journal of Haematology, 1996, 57, 328-329.	2.2	Ο
56	Polycythemia Vera: Overt to Latent Form in a Patient with Budd-Chiari Syndrome. Journal of Clinical Gastroenterology, 1996, 22, 76-77.	2.2	4