Vijay Ramaswamy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533966/publications.pdf

Version: 2024-02-01

279 papers 18,616 citations

18482 62 h-index 127 g-index

290 all docs

290 docs citations

times ranked

290

18031 citing authors

#	Article	IF	CITATIONS
1	Molecular Classification of Ependymal Tumors across All CNS Compartments, Histopathological Grades, and Age Groups. Cancer Cell, 2015, 27, 728-743.	16.8	933
2	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
3	The whole-genome landscape of medulloblastoma subtypes. Nature, 2017, 547, 311-317.	27.8	787
4	Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature, 2012, 488, 49-56.	27.8	761
5	Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. Journal of Clinical Oncology, 2016, 34, 2206-2211.	1.6	692
6	Comprehensive Analysis of Hypermutation in Human Cancer. Cell, 2017, 171, 1042-1056.e10.	28.9	596
7	Challenges to curing primary brain tumours. Nature Reviews Clinical Oncology, 2019, 16, 509-520.	27.6	540
8	Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 2014, 506, 445-450.	27.8	521
9	Patterns of brain injury in term neonatal encephalopathy. Journal of Pediatrics, 2005, 146, 453-460.	1.8	487
10	Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathologica, 2016, 131, 821-831.	7.7	478
11	Subgroup-Specific Prognostic Implications of <i>TP53</i> Mutation in Medulloblastoma. Journal of Clinical Oncology, 2013, 31, 2927-2935.	1.6	381
12	Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncology, The, 2013, 14, 1200-1207.	10.7	307
13	Disrupting the CD47-SIRPÎ \pm anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Science Translational Medicine, 2017, 9, .	12.4	306
14	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	27.8	293
15	Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: The role of cystic periventricular leukomalacia. Journal of Pediatrics, 2004, 145, 593-599.	1.8	289
16	Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncology, The, 2016, 17, 484-495.	10.7	274
17	The current consensus on the clinical management of intracranial ependymoma and its distinct molecular variants. Acta Neuropathologica, 2017, 133, 5-12.	7.7	271
18	Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncology, The, 2018, 19, 785-798.	10.7	268

#	Article	lF	CITATIONS
19	Divergent clonal selection dominates medulloblastoma at recurrence. Nature, 2016, 529, 351-357.	27.8	266
20	Cytogenetic Prognostication Within Medulloblastoma Subgroups. Journal of Clinical Oncology, 2014, 32, 886-896.	1.6	263
21	MRI Surrogates for Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2014, 35, 1263-1269.	2.4	257
22	Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathologica, 2013, 125, 913-916.	7.7	244
23	<i>BRAF</i> Mutation and <i>CDKN2A</i> Deletion Define a Clinically Distinct Subgroup of Childhood Secondary High-Grade Glioma. Journal of Clinical Oncology, 2015, 33, 1015-1022.	1.6	244
24	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell, 2020, 37, 569-583.e5.	16.8	244
25	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
26	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
27	Molecular heterogeneity and CXorf67 alterations in posterior fossa group A (PFA) ependymomas. Acta Neuropathologica, 2018, 136, 211-226.	7.7	199
28	Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid Tumors. Cancer Cell, 2016, 30, 891-908.	16.8	191
29	Second-generation molecular subgrouping of medulloblastoma: an international meta-analysis of Group 3 and Group 4 subtypes. Acta Neuropathologica, 2019, 138, 309-326.	7.7	180
30	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	27.8	170
31	Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 2013, 125, 373-384.	7.7	169
32	Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome. Acta Neuropathologica, 2017, 134, 705-714.	7.7	168
33	Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis. Journal of Clinical Oncology, 2016, 34, 2468-2477.	1.6	160
34	Phase II Weekly Vinblastine for Chemotherapy-NaÃ-ve Children With Progressive Low-Grade Glioma: A Canadian Pediatric Brain Tumor Consortium Study. Journal of Clinical Oncology, 2016, 34, 3537-3543.	1.6	157
35	Conformal Radiation Therapy for Pediatric Ependymoma, Chemotherapy for Incompletely Resected Ependymoma, and Observation for Completely Resected, Supratentorial Ependymoma. Journal of Clinical Oncology, 2019, 37, 974-983.	1.6	154
36	TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathologica, 2013, 126, 917-929.	7.7	146

#	Article	IF	Citations
37	Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. Journal of Clinical Oncology, 2020, 38, 454-461.	1.6	143
38	Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma. Nature Medicine, 2020, 26, 720-731.	30.7	141
39	Medulloblastoma: From Myth to Molecular. Journal of Clinical Oncology, 2017, 35, 2355-2363.	1.6	129
40	Recurrent noncoding U1ÂsnRNA mutations drive cryptic splicing in SHH medulloblastoma. Nature, 2019, 574, 707-711.	27.8	129
41	Systematic Review of Biomarkers of Brain Injury in Term Neonatal Encephalopathy. Pediatric Neurology, 2009, 40, 215-226.	2.1	125
42	Medulloblastoma subgroup-specific outcomes in irradiated children: who are the true high-risk patients?. Neuro-Oncology, 2016, 18, 291-297.	1.2	112
43	Spatial heterogeneity in medulloblastoma. Nature Genetics, 2017, 49, 780-788.	21.4	112
44	The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehogâ^'driven medulloblastoma. Nature Medicine, 2014, 20, 1035-1042.	30.7	110
45	Clinical and treatment factors determining longâ€ŧerm outcomes for adult survivors of childhood lowâ€grade glioma: A populationâ€based study. Cancer, 2016, 122, 1261-1269.	4.1	109
46	PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Research, 2016, 76, 4708-4719.	0.9	107
47	Aberrant ERBB4-SRC Signaling as a Hallmark of Group 4 Medulloblastoma Revealed by Integrative Phosphoproteomic Profiling. Cancer Cell, 2018, 34, 379-395.e7.	16.8	104
48	Clinical, Pathological, and Molecular Characterization of Infant Medulloblastomas Treated with Sequential Highâ€Dose Chemotherapy. Pediatric Blood and Cancer, 2016, 63, 1527-1534.	1.5	94
49	MR Imaging–Based Radiomic Signatures of Distinct Molecular Subgroups of Medulloblastoma. American Journal of Neuroradiology, 2019, 40, 154-161.	2.4	87
50	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
51	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
52	Medulloblastoma: From Molecular Subgroups to Molecular Targeted Therapies. Annual Review of Neuroscience, 2018, 41, 207-232.	10.7	85
53	Spectrum of central nervous system abnormalities in neurocutaneous melanocytosis. Developmental Medicine and Child Neurology, 2012, 54, 563-568.	2.1	84
54	Molecular Characterization of Choroid Plexus Tumors Reveals Novel Clinically Relevant Subgroups. Clinical Cancer Research, 2015, 21, 184-192.	7.0	84

#	Article	IF	CITATIONS
55	Medulloblastoma subgroups remain stable across primary and metastatic compartments. Acta Neuropathologica, 2015, 129, 449-457.	7.7	80
56	Personalizing the Treatment of Pediatric Medulloblastoma: Polo-like Kinase 1 as a Molecular Target in High-Risk Children. Cancer Research, 2013, 73, 6734-6744.	0.9	79
57	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	28.9	79
58	Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics, 2018, 38, 2102-2122.	3.3	75
59	EAG2 potassium channel with evolutionarily conserved function as a brain tumor target. Nature Neuroscience, 2015, 18, 1236-1246.	14.8	74
60	Significance of molecular classification of ependymomas: C11orf95-RELA fusion-negative supratentorial ependymomas are a heterogeneous group of tumors. Acta Neuropathologica Communications, 2018, 6, 134.	5.2	74
61	Intellectual Outcome in Molecular Subgroups of Medulloblastoma. Journal of Clinical Oncology, 2016, 34, 4161-4170.	1.6	72
62	Atypical Rett syndrome with selective FOXG1 deletion detected by comparative genomic hybridization: case report and review of literature. European Journal of Human Genetics, 2009, 17, 1577-1581.	2.8	67
63	Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Acta Neuropathologica, 2020, 139, 223-241.	7.7	65
64	Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Child's Nervous System, 2015, 31, 1661-1676.	1.1	63
65	Current therapy and the evolving molecular landscape of paediatric ependymoma. European Journal of Cancer, 2017, 70, 34-41.	2.8	63
66	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precision Oncology, 2020, 4, 561-571.	3.0	62
67	Developmental phosphoproteomics identifies the kinase CK2 as a driver of Hedgehog signaling and a therapeutic target in medulloblastoma. Science Signaling, 2018, 11 , .	3.6	59
68	Profound clinical and radiological response to BRAF inhibition in a 2â€monthâ€old diencephalic child with hypothalamic/chiasmatic glioma. Pediatric Blood and Cancer, 2016, 63, 2038-2041.	1.5	57
69	Inflammasome induction in Rasmussen's encephalitis: cortical and associated white matter pathogenesis. Journal of Neuroinflammation, 2013, 10, 152.	7.2	55
70	Medulloblastoma molecular dissection. Current Opinion in Oncology, 2013, 25, 674-681.	2.4	54
71	The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro-Oncology, 2017, 19, 1217-1227.	1.2	53
72	Advances in the molecular classification of pediatric brain tumors: a guide to the galaxy. Journal of Pathology, 2020, 251, 249-261.	4.5	53

#	Article	IF	Citations
73	Genetic and molecular alterations across medulloblastoma subgroups. Journal of Molecular Medicine, 2015, 93, 1075-1084.	3.9	51
74	Foretinib Is Effective Therapy for Metastatic Sonic Hedgehog Medulloblastoma. Cancer Research, 2015, 75, 134-146.	0.9	51
75	Reirradiation in patients with diffuse intrinsic pontine gliomas: The Canadian experience. Pediatric Blood and Cancer, 2018, 65, e26988.	1.5	51
76	FISH and chips: the recipe for improved prognostication and outcomes for children with medulloblastoma. Cancer Genetics, 2011, 204, 577-588.	0.4	50
77	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer, 2019, 125, 1867-1876.	4.1	49
78	Clinical implications of medulloblastoma subgroups: incidence of CSF diversion surgery. Journal of Neurosurgery: Pediatrics, 2015, 15, 236-242.	1.3	48
79	The transcriptional landscape of Shh medulloblastoma. Nature Communications, 2021, 12, 1749.	12.8	47
80	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	1.1	46
81	Ultra high-risk PFA ependymoma is characterized by loss of chromosome 6q. Neuro-Oncology, 2021, 23, 1360-1370.	1.2	46
82	Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro-Oncology, 2020, 22, 773-784.	1.2	44
83	The clinical importance of medulloblastoma extent of resection: a systematic review. Journal of Neuro-Oncology, 2018, 139, 523-539.	2.9	43
84	Duration of the preâ€diagnostic interval in medulloblastoma is subgroup dependent. Pediatric Blood and Cancer, 2014, 61, 1190-1194.	1.5	42
85	A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene, 2017, 36, 5969-5984.	5.9	42
86	Low Grade Gliomas in Children. Journal of Child Neurology, 2016, 31, 517-522.	1.4	41
87	Spinal Myxopapillary Ependymomas Demonstrate a Warburg Phenotype. Clinical Cancer Research, 2015, 21, 3750-3758.	7.0	40
88	Subgroup-specific prognostic signaling and metabolic pathways in pediatric medulloblastoma. BMC Cancer, 2019, 19, 571.	2.6	40
89	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
90	Overcoming resistance to sonic hedgehog inhibition by targeting p90 ribosomal S6 kinase in pediatric medulloblastoma. Pediatric Blood and Cancer, 2014, 61, 107-115.	1.5	39

#	Article	IF	Citations
91	Differential patterns of metastatic dissemination across medulloblastoma subgroups. Journal of Neurosurgery: Pediatrics, 2018, 21, 145-152.	1.3	39
92	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro-Oncology, 2020, 22, 1474-1483.	1.2	39
93	Cross-Species Genomics Reveals Oncogenic Dependencies in ZFTA/C11orf95 Fusion–Positive Supratentorial Ependymomas. Cancer Discovery, 2021, 11, 2230-2247.	9.4	39
94	Decompressive Hemicraniectomy in Children With Severe Ischemic Stroke and Life-Threatening Cerebral Edema. Journal of Child Neurology, 2008, 23, 889-894.	1.4	38
95	Review of molecular classification and treatment implications of pediatric brain tumors. Current Opinion in Pediatrics, 2018, 30, 3-9.	2.0	38
96	Poliovirus Receptor (CD155) Expression in Pediatric Brain Tumors Mediates Oncolysis of Medulloblastoma and Pleomorphic Xanthoastrocytoma. Journal of Neuropathology and Experimental Neurology, 2018, 77, 696-702.	1.7	38
97	WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma. Acta Neuropathologica Communications, 2014, 2, 174.	5.2	37
98	Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nature Communications, 2018, 9, 4121.	12.8	36
99	Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells. Acta Neuropathologica, 2014, 128, 863-877.	7.7	34
100	Subgroup and subtype-specific outcomes in adult medulloblastoma. Acta Neuropathologica, 2021, 142, 859-871.	7.7	34
101	Genome-Wide DNA Methylation Analysis Reveals Epigenetic Dysregulation of MicroRNA-34A in <i>TP53</i> -Associated Cancer Susceptibility. Journal of Clinical Oncology, 2016, 34, 3697-3704.	1.6	33
102	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. Neuro-Oncology, 2019, 21, 547-557.	1.2	32
103	CD271+ Cells Are Diagnostic and Prognostic and Exhibit Elevated MAPK Activity in SHH Medulloblastoma. Cancer Research, 2018, 78, 4745-4759.	0.9	31
104	Deep Learning for Pediatric Posterior Fossa Tumor Detection and Classification: A Multi-Institutional Study. American Journal of Neuroradiology, 2020, 41, 1718-1725.	2.4	31
105	Global Control of Histone Modification by the Anaphase-Promoting Complex. Molecular and Cellular Biology, 2003, 23, 9136-9149.	2.3	30
106	Characteristics of Oral Mucosal Events Related to Bevacizumab Treatment. Oncologist, 2012, 17, 274-278.	3.7	30
107	Posterior fossa ependymoma: current insights. Child's Nervous System, 2015, 31, 1699-1706.	1.1	29
108	p53 and Medulloblastoma. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026278.	6.2	29

#	Article	IF	CITATIONS
109	Adolescents and young adults with brain tumors in the context of molecular advances in neuroâ€oncology. Pediatric Blood and Cancer, 2018, 65, e26861.	1.5	29
110	Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse. Neuro-Oncology, 2022, 24, 153-165.	1.2	28
111	Neoadjuvant chemotherapy reduces blood loss during the resection of pediatric choroid plexus carcinomas. Journal of Neurosurgery: Pediatrics, 2015, 16, 126-133.	1.3	27
112	MRI Characteristics of Primary Tumors and Metastatic Lesions in Molecular Subgroups of Pediatric Medulloblastoma: A Single-Center Study. American Journal of Neuroradiology, 2018, 39, 949-955.	2.4	27
113	MRI Radiogenomics of Pediatric Medulloblastoma: A Multicenter Study. Radiology, 2022, 304, 406-416.	7.3	27
114	Canonical <scp>TGF</scp> â€Î² Pathway Activity Is a Predictor of <scp>SHH</scp> â€Driven Medulloblastoma Survival and Delineates Putative Precursors in Cerebellar Development. Brain Pathology, 2013, 23, 178-191.	4.1	26
115	The Ubiquitin-Dependent Targeting Pathway in <i>Saccharomyces cerevisiae</i> Plays a Critical Role in Multiple Chromatin Assembly Regulatory Steps. Genetics, 2002, 162, 615-632.	2.9	26
116	An epigenetic therapy for diffuse intrinsic pontine gliomas. Nature Medicine, 2014, 20, 1378-1379.	30.7	25
117	The molecular biology of medulloblastoma metastasis. Brain Pathology, 2020, 30, 691-702.	4.1	25
118	Neurotrophin Signaling in Medulloblastoma. Cancers, 2020, 12, 2542.	3.7	25
119	A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma. Clinical Cancer Research, 2018, 24, 1355-1363.	7.0	24
120	Chloride intracellular channel 1 cooperates with potassium channel EAG2 to promote medulloblastoma growth. Journal of Experimental Medicine, 2020, 217, .	8.5	24
121	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
122	A microRNA-1280/JAG2 network comprises a novel biological target in high-risk medulloblastoma. Oncotarget, 2015, 6, 2709-2724.	1.8	24
123	WIP1 modulates responsiveness to Sonic Hedgehog signaling in neuronal precursor cells and medulloblastoma. Oncogene, 2016, 35, 5552-5564.	5.9	23
124	Medulloblastoma in adults: they're not just big kids. Neuro-Oncology, 2016, 18, 895-897.	1.2	23
125	Germline-driven replication repair-deficient high-grade gliomas exhibit unique hypomethylation patterns. Acta Neuropathologica, 2020, 140, 765-776.	7.7	23
126	The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma. Scientific Reports, 2020, 10, 148.	3.3	22

#	Article	IF	Citations
127	Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget, 2015, 6, 38881-38900.	1.8	22
128	Performance of the McGill Interactive Pediatric OncoGenetic Guidelines for Identifying Cancer Predisposition Syndromes. JAMA Oncology, 2021, 7, 1806.	7.1	22
129	Treatment implications of posterior fossa ependymoma subgroups. Chinese Journal of Cancer, 2016, 35, 93.	4.9	21
130	Molecular correlates of cerebellar mutism syndrome in medulloblastoma. Neuro-Oncology, 2020, 22, 290-297.	1.2	21
131	PPAR and GST polymorphisms may predict changes in intellectual functioning in medulloblastoma survivors. Journal of Neuro-Oncology, 2019, 142, 39-48.	2.9	21
132	An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate. Nature Communications, 2020, 11, 3627.	12.8	21
133	HDAC and MAPK/ERK Inhibitors Cooperate To Reduce Viability and Stemness in Medulloblastoma. Journal of Molecular Neuroscience, 2020, 70, 981-992.	2.3	21
134	Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. ELife, 2016, 5, .	6.0	21
135	BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene, 2019, 38, 1702-1716.	5.9	20
136	Immunohistochemical and nanoString-Based Subgrouping of Clinical Medulloblastoma Samples. Journal of Neuropathology and Experimental Neurology, 2020, 79, 437-447.	1.7	19
137	Re-irradiation for children with recurrent medulloblastoma in Toronto, Canada: a 20-year experience. Journal of Neuro-Oncology, 2019, 145, 107-114.	2.9	18
138	MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem celland Group 3-properties. BMC Cancer, 2016, 16, 115.	2.6	17
139	Downregulation of miR-204 expression defines a highly aggressive subset of Group 3/Group 4 medulloblastomas. Acta Neuropathologica Communications, 2019, 7, 52.	5.2	17
140	Bevacizumab for NF2â€associated vestibular schwannomas of childhood and adolescence. Pediatric Blood and Cancer, 2020, 67, e28228.	1.5	17
141	Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus. Journal of Neurosurgery: Pediatrics, 2021, 27, 131-138.	1.3	17
142	Prognostic relevance of miRâ€124â€3p and its target <i>TP53INP1</i> in pediatric ependymoma. Genes Chromosomes and Cancer, 2017, 56, 639-650.	2.8	16
143	Characterization of a novel <scp>OTX</scp> 2â€driven stem cell program in Group 3 and Group 4 medulloblastoma. Molecular Oncology, 2018, 12, 495-513.	4.6	16
144	European genetic ancestry associated with risk of childhood ependymoma. Neuro-Oncology, 2020, 22, 1637-1646.	1.2	16

#	Article	IF	Citations
145	Intellectual changes after radiation for children with brain tumors: which brain structures are most important?. Neuro-Oncology, 2021, 23, 487-497.	1.2	16
146	The HHIP-AS1 lncRNA promotes tumorigenicity through stabilization of dynein complex 1 in human SHH-driven tumors. Nature Communications, 2022, 13 , .	12.8	16
147	miR miR on the wall, who's the most malignant medulloblastoma miR of them all?. Neuro-Oncology, 2018, 20, 313-323.	1.2	15
148	Infant medulloblastoma â€" learning new lessons from old strata. Nature Reviews Clinical Oncology, 2018, 15, 659-660.	27.6	15
149	Antitumor Activities and Cellular Changes Induced by TrkB Inhibition in Medulloblastoma. Frontiers in Pharmacology, 2019, 10, 698.	3 . 5	15
150	Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta Neuropathologica Communications, 2020, 8, 173.	5. 2	15
151	Repeat irradiation for children with supratentorial highâ€grade glioma. Pediatric Blood and Cancer, 2019, 66, e27881.	1.5	14
152	Minimizing General Anesthetic Use in Pediatric Radiation Therapy. Practical Radiation Oncology, 2020, 10, e159-e165.	2.1	14
153	Intertumoral and Intratumoral Heterogeneity as a Barrier for Effective Treatment of Medulloblastoma. Neurosurgery, 2013, 60, 57-63.	1.1	13
154	Advances in managing medulloblastoma and intracranial primitive neuro-ectodermal tumors. F1000prime Reports, 2014, 6, 56.	5.9	13
155	Clinical and pre-clinical utility of genomics in medulloblastoma. Expert Review of Neurotherapeutics, 2018, 18, 633-647.	2.8	13
156	Canadian Pediatric Neuro-Oncology Standards of Practice. Frontiers in Oncology, 2020, 10, 593192.	2.8	13
157	An Unusual Presentation of Copper Metabolism Disorder and a Possible Connection With Niemann-Pick Type C. Journal of Child Neurology, 2011, 26, 518-521.	1.4	12
158	Somatostatin receptor subtype 2 (sst2) is a potential prognostic marker and a therapeutic target in medulloblastoma. Child's Nervous System, 2013, 29, 1253-1262.	1.1	12
159	Bridging the treatment gap in infant medulloblastoma: molecularly informed outcomes of a globally feasible regimen. Neuro-Oncology, 2020, 22, 1873-1881.	1.2	12
160	Clinical phenotypes and prognostic features of embryonal tumours with multi-layered rosettes: a Rare Brain Tumor Registry study. The Lancet Child and Adolescent Health, 2021, 5, 800-813.	5.6	12
161	Molecular Subgroup Is the Strongest Predictor of Medulloblastoma Outcome in a Resource-Limited Country. JCO Global Oncology, 2021, 7, 1442-1453.	1.8	12
162	Vanishing White Matter Disease With Periodic (Paroxysmal) Hemiparesis. Pediatric Neurology, 2006, 35, 65-68.	2.1	11

#	Article	IF	Citations
163	The Amazing and Deadly Glioma Race. Cancer Cell, 2015, 28, 275-277.	16.8	11
164	Medulloblastoma has a global impact on health related quality of life: Findings from an international cohort. Cancer Medicine, 2020, 9, 447-459.	2.8	11
165	Hearing Loss After Radiation and Chemotherapy for CNS and Head-and-Neck Tumors in Children. Journal of Clinical Oncology, 2021, 39, 3813-3821.	1.6	11
166	Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancer. Journal of Clinical Investigation, $2021,131,.$	8.2	11
167	Integrating RNA sequencing into neuro-oncology practice. Translational Research, 2017, 189, 93-104.	5.0	10
168	Causes of death in pediatric neuro-oncology: the sickkids experience from 2000 to 2017. Journal of Neuro-Oncology, 2020, 149, 181-189.	2.9	10
169	Fall of the Optical Wall: Freedom from the Tyranny of the Microscope Improves Glioma Risk Stratification. Cancer Cell, 2016, 29, 137-138.	16.8	9
170	The clinical significance of equivocal findings on spinal MRI in children with medulloblastoma. Pediatric Blood and Cancer, 2017, 64, e26472.	1.5	9
171	Bevacizumab for pediatric radiation necrosis. Neuro-Oncology Practice, 2020, 7, 409-414.	1.6	9
172	Machine Assist for Pediatric Posterior Fossa Tumor Diagnosis: A Multinational Study. Neurosurgery, 2021, 89, 892-900.	1.1	8
173	Hearing loss and intellectual outcome in children treated for embryonal brain tumors: Implications for young children treated with radiation sparing approaches. Cancer Medicine, 2021, 10, 7111-7125.	2.8	8
174	Clinically Tractable Outcome Prediction of Non-WNT/Non-SHH Medulloblastoma Based on TPD52 IHC in a Multicohort Study. Clinical Cancer Research, 2022, 28, 116-128.	7.0	8
175	Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles. Neuro-Oncology, 2022, 24, 986-994.	1.2	8
176	Combined MEK and JAK/STAT3 pathway inhibition effectively decreases SHH medulloblastoma tumor progression. Communications Biology, 2022, 5, .	4.4	8
177	Redefining Ventricular Target Volume in Germinoma: Is Inclusion of Temporal Horns Necessary?. International Journal of Radiation Oncology Biology Physics, 2019, 104, 852-858.	0.8	7
178	Effective and safe tumor inhibition using vinblastine in medulloblastoma. Pediatric Blood and Cancer, 2019, 66, e27694.	1.5	7
179	Rare IDH1 variants are common in pediatric hemispheric diffuse astrocytomas and frequently associated with Li-Fraumeni syndrome. Acta Neuropathologica, 2020, 139, 795-797.	7.7	7
180	Recurrent ACVR1 mutations in posterior fossa ependymoma. Acta Neuropathologica, 2022, 144, 373-376.	7.7	7

#	Article	IF	Citations
181	Epilepsia Partialis Continua: Acute Disseminated Encephalomyelitis or Rasmussen's Encephalitis?. Pediatric Neurology, 2005, 32, 341-345.	2.1	6
182	Developmental Disability: Duplication of Zinc Finger Transcription Factors 673 and 674. Pediatric Neurology, 2010, 43, 209-212.	2.1	6
183	Old chemotherapy makes a comeback: dual alkylator therapy for pediatric high-grade glioma. Neuro-Oncology, 2016, 18, 1333-1334.	1.2	6
184	Paediatric atypical choroid plexus papilloma: is adjuvant therapy necessary?. Journal of Neuro-Oncology, 2021, 155, 63-70.	2.9	6
185	Selumetinib for symptomatic, inoperable plexiform neurofibromas in children with neurofibromatosis type 1: A national realâ€world case series. Pediatric Blood and Cancer, 2022, 69, e29633.	1.5	6
186	Acquired Monocular Nystagmus as the Initial Presenting Sign of a Chiasmal Glioma. Canadian Journal of Neurological Sciences, 2010, 37, 96-97.	0.5	5
187	Less treatment for Wing less medulloblastoma: germline data re-emphasize this. Neuro-Oncology, 2020, 22, 7-9.	1.2	5
188	Treatment response of CNS highâ€grade neuroepithelial tumors with MN1 alteration. Pediatric Blood and Cancer, 2020, 67, e28627.	1.5	5
189	Re-evaluating surgery and re-irradiation for locally recurrent pediatric ependymoma – a multi-institutional study. Neuro-Oncology Advances, 2021, 3, vdab158.	0.7	5
190	Drain the swamp to beat glioma. Nature, 2017, 549, 460-461.	27.8	4
191	Bioinformatic Strategies for the Genomic and Epigenomic Characterization of Brain Tumors. Methods in Molecular Biology, 2019, 1869, 37-56.	0.9	4
192	Indolent course of brainstem tumors with K27Mâ€H3.3 mutation. Pediatric Blood and Cancer, 2020, 67, e28102.	1.5	4
193	Building the ecosystem for pediatric neuroâ€oncology care in Pakistan: Results of a 7â€year long twinning program between Canada and Pakistan. Pediatric Blood and Cancer, 2022, 69, e29726.	1.5	4
194	Long-Term Survival and Late Onset Seizures in an Adolescent with Trisomy 13. Canadian Journal of Neurological Sciences, 2010, 37, 694-696.	0.5	3
195	In Reply. Oncologist, 2013, 18, e18.	3.7	3
196	Pediatric cancer genomics, a play rather than a portrait. Nature Genetics, 2015, 47, 851-852.	21.4	3
197	CAR T cells for childhood diffuse midline gliomas. Nature Medicine, 2018, 24, 534-535.	30.7	3
198	Reirradiation for recurrent craniopharyngioma. Advances in Radiation Oncology, 2020, 5, 1305-1310.	1.2	3

#	Article	IF	Citations
199	Selumetinib for optic pathway glioma: Seeing through the fog, (not yet) the end of the tunnel?. Neuro-Oncology, 2021, 23, 1627-1628.	1.2	3
200	Ventricular size determination and management of ventriculomegaly and hydrocephalus in patients with diffuse intrinsic pontine glioma: an institutional experience. Journal of Neurosurgery, 2021, 135, 1139-1145.	1.6	3
201	Relationship of BRAF V600E and associated secondary mutations on survival rate and response to conventional therapies in childhood low-grade glioma Journal of Clinical Oncology, 2016, 34, 10509-10509.	1.6	3
202	Rearrangement of Chromosome 14q with Associated White Matter Disease. Pediatric Neurology, 2011, 45, 117-120.	2.1	2
203	Can miRNA-based real-time PCR be used to classify medulloblastomas?. CNS Oncology, 2014, 3, 173-175.	3.0	2
204	Proton beam therapy for medulloblastoma. Lancet Oncology, The, 2016, 17, e173-e174.	10.7	2
205	Early diffusion restriction of white matter in infants with small subdural hematomas is associated with delayed atrophy. Child's Nervous System, 2017, 33, 289-295.	1.1	2
206	Radiation-induced intracranial aneurysm presenting with acute hemorrhage in a child treated for medulloblastoma. Child's Nervous System, 2021, 37, 1387-1389.	1.1	2
207	Piecing together the Pediatric Brain Tumor Puzzle. Trends in Genetics, 2021, 37, 204-206.	6.7	2
208	Molecular and clinical correlates of medulloblastoma subgroups: A narrative review. Glioma (Mumbai, India), 2021, 4, 92.	0.1	2
209	A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway Journal of Clinical Oncology, 2022, 40, 2042-2042.	1.6	2
210	Pontine Infantile Glioma Simplified. Cancer Cell, 2017, 32, 548-549.	16.8	1
211	RTHP-34. CRANIOSPINAL IRRADIATION (CSI) AS PART OF RE-IRRADIATION (RT2) FOR CHILDREN WITH RECURRENT INTRACRANIAL EPENDYMOMA. Neuro-Oncology, 2018, 20, vi232-vi232.	1.2	1
212	LGG-60. THE GENETIC LANDSCAPE OF PEDIATRIC LOW-GRADE GLIOMAS: INCIDENCE, PROGNOSIS AND RESPONSE TO THERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	1
213	PDTM-21. MATCHING OF SINGLE CELL TRANSCRIPTOMICS FROM CEREBELLAR DEVELOPMENT IDENTIFIES PUTATIVE SUBGROUP SPECIFIC CELLS OF ORIGIN FOR MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi208-vi208.	1.2	1
214	IMMU-03. TUMOR NECROSIS FACTOR OVERCOMES IMMUNE EVASION IN P53-MUTANT MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	1
215	GENE-14. UNIQUE MOLECULAR AND CLINICAL FEATURES OF LI-FRAUMENI SYNDROME ASSOCIATED BRAIN TUMOURS. Neuro-Oncology, 2019, 21, ii84-ii84.	1.2	1
216	Reply to S.A. Milgrom et al. Journal of Clinical Oncology, 2020, 38, 2212-2213.	1.6	1

#	Article	IF	CITATIONS
217	Medulloblastoma (cross)talk through extracellular vesicles. Neuro-Oncology, 2021, 23, 527-529.	1.2	1
218	Basic Science of Pediatric Brain Tumors. , 2015, , 59-67.		1
219	MBRS-54. POOR SURVIVAL IN REPLICATION REPAIR DEFICIENT HYPERMUTANT MEDULLOBLASTOMA AND CNS EMBRYONAL TUMORS: A REPORT FROM THE INTERNATIONAL RRD CONSORTIUM. Neuro-Oncology, 2020, 22, iii407-iii407.	1.2	1
220	Re-irradiation for relapsed paediatric ependymoma Journal of Clinical Oncology, 2016, 34, 10565-10565.	1.6	1
221	Genetic Basis and Classification of Cerebral Neoplasms. , 2018, , 1-21.		1
222	QOL-09. WHOLE-BRAIN WHITE MATTER NETWORK CONNECTIVITY IS DISRUPTED BY PEDIATRIC BRAIN TUMOR TREATMENT. Neuro-Oncology, 2020, 22, iii432-iii432.	1.2	1
223	MBRS-66. COST-EFFECTIVE METHOD TO INCORPORATE MOLECULAR CLASSIFICATION OF MEDULLOBLASTOMA INTO A LATIN-AMERICAN CLINICAL TRIAL. Neuro-Oncology, 2020, 22, iii409-iii410.	1.2	1
224	A novel central nervous system embryonal tumor successfully treated with multiâ€modal therapy highlights limitation of methylationâ€based tumor classification. Pediatric Blood and Cancer, 2022, 69, e29520.	1.5	1
225	MEDB-14. Clinical outcome of pediatric medulloblastoma patients with Li-Fraumeni syndrome. Neuro-Oncology, 2022, 24, i107-i107.	1.2	1
226	How do we approach the management of medulloblastoma in young children?. Pediatric Blood and Cancer, 0, , .	1.5	1
227	P.139 Pediatric posterior fossa ependymoma recurrence in a molecularly defined cohort – Clinical, demographic, and surgical factors associated with outcome. Canadian Journal of Neurological Sciences, 2022, 49, S43-S43.	0.5	1
228	Failure of diffusion weighted MRI to detect severe hypoxic-ischemic encephalopathy in a child. Journal of Pediatric Neurology, 2015, 08, 231-235.	0.2	0
229	Fingering the Correct Culprit: NonRANdom Target Selection for Therapy of Neuroblastoma. Trends in Cancer, 2015, 1, 213-215.	7.4	О
230	RA-10SUBTLE FINDINGS ON SPINAL MRIs IN CHILDREN NEWLY DIAGNOSED WITH MEDULLOBLASTOMA. Neuro-Oncology, 2016, 18, iii166.5-iii167.	1.2	0
231	Can telomerase activity be unleashed to refine prognosis within ependymoma subgroups?. Neuro-Oncology, 2017, 19, 1149-1151.	1.2	0
232	Why it's time for a change in the management of adolescent and adult medulloblastoma. Expert Review of Quality of Life in Cancer Care, 2017, 2, 207-213.	0.6	0
233	PDTM-28. THE CONTRIBUTION OF PAX GENES AS NOVEL TUMOR SUPPRESSORS IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2018, 20, vi209-vi209.	1.2	О
234	EPEN-23. MOLECULAR HETEROGENEITY AMONG PEDIATRIC POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2018, 20, i77-i78.	1.2	0

#	Article	IF	Citations
235	MBRS-14. REGULATION OF MEDULLOBLASTOMA IMMUNOGENICITY BY TP53 AND TNF ALPHA. Neuro-Oncology, 2018, 20, i131-i131.	1.2	0
236	LGG-10. EPIGENETIC/GENETIC/MORPHOLOGIC ANALYSES REVEAL CLINICAL/PROGNOSTIC INSIGHT OF PEDIATRIC LOW GRADE GLIOMAS. Neuro-Oncology, 2018, 20, i106-i106.	1.2	0
237	EPEN-28. HETEROGENEITY WITHIN THE PFB EPENDYMOMA SUBGROUP. Neuro-Oncology, 2018, 20, i79-i79.	1.2	0
238	EPEN-31. SUBGROUP SPECIFIC LONG-TERM SURVIVAL AND NEUROCOGNITIVE OUTCOMES IN POSTERIOR FOSSA EPENDYMOMA (PFE). Neuro-Oncology, 2018, 20, i79-i79.	1.2	0
239	PDTM-46. POLIOVIRUS RECEPTOR (CD155) EXPRESSION IN PEDIATRIC BRAIN TUMORS MEDIATES ONCOLYSIS OF MEDULLOBLASTOMA AND PLEOMORPHIC XANTHOASTROCYTOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	0
240	TMOD-35. CAN RARE SOX9-POSITIVE CELLS INCITE MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE?. Neuro-Oncology, 2018, 20, vi276-vi276.	1.2	0
241	GENE-21. A COMMON FETAL DEVELOPMENTAL ORIGIN FOR PFA EPENDYMOMA, PFB EPENDYMOMA, AND CEREBELLAR PILOCYTIC ASTROCYTOMAS?. Neuro-Oncology, 2018, 20, vi107-vi107.	1.2	0
242	18 Peroxiredoxin1 is a therapeutic target in group-3 medulloblastoma. Canadian Journal of Neurological Sciences, 2018, 45, S16-S16.	0.5	0
243	LGG-59. REMARKABLE OBJECTIVE RESPONSE AND FAVORABLE SURVIVAL FOR BRAF-V600E CHILDHOOD LOW-GRADE GLIOMAS TO BRAF INHIBITORS COMPARED CONVENTIONAL CHEMOTHERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	0
244	DEV-17. WHO ARE THE HIGH RISK MEDULLOBLASTOMA SUBGROUPS IN JORDAN?. Neuro-Oncology, 2018, 20, i48-i48.	1.2	0
245	MEDU-04. AN OTX2-PAX GENE NETWORK REGULATES GROUP 3 MEDULLOBLASTOMA DIFFERENTIATION AND TUMOR GROWTH. Neuro-Oncology, 2019, 21, ii103-ii104.	1.2	0
246	Reply to  Assembling the brain trust: the multidisciplinary imperative in neuro-oncology'. Nature Reviews Clinical Oncology, 2019, 16, 522-523.	27.6	0
247	MEDU-26. LATENT SOX9-POSITIVE CELLS RESPONSIBLE FOR MYC-DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2019, 21, ii108-ii109.	1.2	0
248	LGG-16. PREDICTORS OF OUTCOME IN BRAF-V600E PEDIATRIC GLIOMAS TREATED WITH BRAF INHIBITORS: A REPORT FROM THE PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii102-ii102.	1.2	0
249	MEDU-40. MATCHING OF SINGLE CELL TRANSCRIPTOMICS FROM CEREBELLAR DEVELOPMENT IDENTIFIES PUTATIVE SUBGROUP SPECIFIC CELLS OF ORIGIN FOR MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii111-ii112.	1.2	0
250	101 Re-Irradiation for Children with Recurrent Supratentorial High-Grade Glioma. Radiotherapy and Oncology, 2019, 139, S45.	0.6	0
251	54: Re-Irradiation for Recurrent Craniopharyngioma. Radiotherapy and Oncology, 2020, 150, S26-S27.	0.6	0
252	Next-Generation Profiling of Medulloblastoma: Old Drugs Are an Elegant Weapon in a Civilized Age. Cancer Research, 2021, 81, 264-265.	0.9	0

#	Article	IF	CITATIONS
253	Imaging of metastatic medulloblastoma in the molecular era Journal of Clinical Oncology, 2016, 34, e22003-e22003.	1.6	0
254	Molecular alterations to predict survival and response to chemotherapy of pediatric low-grade glioma Journal of Clinical Oncology, 2017, 35, 10503-10503.	1.6	0
255	Neurocognitive outcome in children with sensorineural hearing loss after treatment of malignant embryonal brain tumors Journal of Clinical Oncology, 2017, 35, 2029-2029.	1.6	O
256	Who are the high risk medulloblastoma subgroups in Jordan?. Journal of Clinical Oncology, 2018, 36, e22506-e22506.	1.6	0
257	EPEN-36. THE TREATMENT OUTCOME OF PAEDIATRIC SUPRATENTORIAL C11ORF95-RELA FUSED EPENDYMOMA: A COMBINED REPORT FROM E-HIT SERIES AND AUSTRALIAN NEW ZEALAND CHILDREN'S HAEMATOLOGY/ONCOLOGY GROUP. Neuro-Oncology, 2020, 22, iii315-iii315.	1.2	O
258	PATH-20. METHYLATION ARRAY PROFILING OF PEDIATRIC BRAIN TUMORS; SINGLE CENTRE EXPERIENCE. Neuro-Oncology, 2020, 22, iii428-iii428.	1.2	0
259	RARE-02.RE-IRRADIATION FOR RECURRENT CRANIOPHARYNGIOMA. Neuro-Oncology, 2020, 22, iii442-iii442.	1.2	O
260	QOL-01. LONGITUDINAL COMPARISON OF NEUROCOGNITIVE TRAJECTORIES IN PEDIATRIC MEDULLOBLASTOMA PATIENTS TREATED WITH PROTON VERSUS PHOTON RADIOTHERAPY. Neuro-Oncology, 2020, 22, iii431-iii431.	1.2	0
261	IMG-13. MRI-BASED RADIOMICS PROGNOSTIC MARKERS OF POSTERIOR FOSSA EPENDYMOMA. Neuro-Oncology, 2020, 22, iii357-iii357.	1.2	O
262	HGG-20. DIAGNOSTIC AND BIOLOGICAL ROLE OF METHYLATION PATTERNS IN REPLICATION REPAIR DEFICIENT HIGH GRADE GLIOMAS. Neuro-Oncology, 2020, 22, iii347-iii348.	1.2	0
263	DIPG-72. LONG-TERM SURVIVAL OF A CLASSIC DIFFUSE INTRINSIC PONTINE GLIOMA TREATED WITH NIMOTUZUMAB. Neuro-Oncology, 2020, 22, iii301-iii301.	1.2	O
264	IMG-22. A DEEP LEARNING MODEL FOR AUTOMATIC POSTERIOR FOSSA PEDIATRIC BRAIN TUMOR SEGMENTATION: A MULTI-INSTITUTIONAL STUDY. Neuro-Oncology, 2020, 22, iii359-iii359.	1.2	0
265	MBRS-10. QUIESCENT SOX9-POSITIVE CELLS BEHIND MYC DRIVEN MEDULLOBLASTOMA RECURRENCE. Neuro-Oncology, 2020, 22, iii400-iii400.	1.2	O
266	RONC-03. NEUROCOGNITIVE CHANGES AFTER RADIATION FOR PEDIATRIC BRAIN TUMOURS: WHICH BRAIN SUBSTRUCTURES ARE MOST IMPORTANT?. Neuro-Oncology, 2020, 22, iii456-iii456.	1.2	0
267	LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION. Neuro-Oncology, 2020, 22, iii377-iii377.	1.2	O
268	EPEN-50. THE MANAGEMENT AND TREATMENT OF PEDIATRIC SPINAL CORD EPENDYMOMA: RESULTS FROM A COLLABORATIVE INTERNATIONAL MULTI-INSTITUTIONAL REVIEW. Neuro-Oncology, 2020, 22, iii317-iii318.	1.2	0
269	MBCL-08. INTEGRATIVE MOLECULAR ANALYSIS OF PATIENT-MATCHED DIAGNOSTIC AND RELAPSED MEDULLOBLASTOMAS. Neuro-Oncology, 2020, 22, iii389-iii389.	1.2	O
270	Genetic Basis and Classification of Cerebral Neoplasms. , 2020, , 1775-1791.		0

#	Article	lF	CITATIONS
271	60: Re-Evaluating Surgery and Re-Irradiation for Locally Recurrent Pediatric Ependymoma – A Multi-Institutional Study. Radiotherapy and Oncology, 2021, 163, S28.	0.6	O
272	Management and Treatment of Pediatric Spinal Cord Ependymoma: Results from an International Multi-Institutional Review. International Journal of Radiation Oncology Biology Physics, 2020, 108, e235-e236.	0.8	0
273	Abnormalities of Structural Brain Connectivity in Pediatric Brain Tumor Survivors. Neuro-Oncology Advances, 0, , .	0.7	0
274	PATH-03. Clinically Tractable Outcome Prediction of Group 3/4 Medulloblastoma Based on TPD52 Immunohistochemistry: a Multicohort Study. Neuro-Oncology, 2022, 24, i158-i158.	1.2	0
275	MEDB-07. Long-term medical and functional outcomes of medulloblastoma survivors: a population-based, matched cohort study. Neuro-Oncology, 2022, 24, i105-i105.	1.2	0
276	MEDB-43. Development of a bioinformatics pipeline for identification of differential DNA methylation events associated with medulloblastoma relapse. Neuro-Oncology, 2022, 24, i115-i115.	1.2	0
277	MEDB-49. Relapsed SHH medulloblastomas in young children. Are there alternatives to full-dose craniospinal irradiation?. Neuro-Oncology, 2022, 24, i117-i117.	1.2	0
278	Long-term medical and functional outcomes of medulloblastoma survivors: A population-based, matched cohort study Journal of Clinical Oncology, 2022, 40, 10053-10053.	1.6	0
279	Long-term medical and functional outcomes of ependymoma survivors: A population-based, matched cohort study Journal of Clinical Oncology, 2022, 40, 10054-10054.	1.6	0