Hernando Curtidor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5533437/publications.pdf

Version: 2024-02-01

102 1,866 21 papers citations h-index

rs citations h-index g-index
4 104 104 1244

104 104 all docs citations

times ranked citing authors

34

#	Article	IF	CITATIONS
1	Shorter Antibacterial Peptide Having High Selectivity for E. coli Membranes and Low Potential for Inducing Resistance. Microorganisms, 2020, 8, 867.	1.6	7
2	Sexual forms obtained in a continuous in vitro cultured Colombian strain of Plasmodium falciparum (FCB2). Malaria Journal, 2020, 19, 57.	0.8	2
3	Evaluating the immunogenicity of chemically-synthesised peptides derived from foot-and-mouth disease VP1, VP2 and VP3 proteins as vaccine candidates. Vaccine, 2020, 38, 3942-3951.	1.7	6
4	Designing Short Peptides: A Sisyphean Task?. Current Organic Chemistry, 2020, 24, 2448-2474.	0.9	2
5	Designing and optimizing new antimicrobial peptides: all targets are not the same. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 351-373.	2.7	35
6	Parasite-Related Genetic and Epigenetic Aspects and Host Factors Influencing Plasmodium falciparum Invasion of Erythrocytes. Frontiers in Cellular and Infection Microbiology, 2019, 8, 454.	1.8	1
7	Preliminary Evaluation of the Safety and Immunogenicity of an Antimalarial Vaccine Candidate Modified Peptide (IMPIPS) Mixture in a Murine Model. Journal of Immunology Research, 2019, 2019, 1-12.	0.9	2
8	Receptor-ligand and parasite protein-protein interactions in <i>Plasmodium vivax</i> : Analysing rhoptry neck proteins 2 and 4. Cellular Microbiology, 2018, 20, e12835.	1.1	15
9	Towards designing a synthetic antituberculosis vaccine: The Rv3587c peptide inhibits mycobacterial entry to host cells. Bioorganic and Medicinal Chemistry, 2018, 26, 2401-2409.	1.4	13
10	Substance P and Calcitonin geneâ€related peptide expression in human periodontal ligament after root canal preparation with Reciproc Blue, WaveOne Gold, ⟨scp⟩XP⟨/scp⟩ EndoShaper and hand files. International Endodontic Journal, 2018, 51, 1358-1366.	2.3	12
11	In silico and in vitro analysis of boAP3d1 protein interaction with bovine leukaemia virus gp51. PLoS ONE, 2018, 13, e0199397.	1.1	13
12	Self-assembling functional programmable protein array for studying protein–protein interactions in malaria parasites. Malaria Journal, 2018, 17, 270.	0.8	10
13	Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malaria Journal, 2018, 17, 301.	0.8	57
14	Identifying and characterising PPE7 (Rv0354c) high activity binding peptides and their role in inhibiting cell invasion. Molecular and Cellular Biochemistry, 2017, 430, 149-160.	1.4	6
15	Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Scientific Reports, 2017, 7, 9616.	1.6	29
16	Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules, 2017, 22, 2199.	1.7	9
17	A New Synthetic Peptide Having Two Target of Antibacterial Action in E. coli ML35. Frontiers in Microbiology, 2016, 7, 2006.	1.5	18
18	Immune protection-inducing protein structures (IMPIPS) against malaria: the weapons needed for beating Odysseus. Vaccine, 2015, 33, 7525-7537.	1.7	14

#	Article	IF	CITATIONS
19	Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opinion on Biological Therapy, 2015, 15, 1567-1581.	1.4	13
20	The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malaria Journal, 2015, 14, 106.	0.8	29
21	Mce4F Mycobacterium tuberculosis protein peptides can inhibit invasion of human cell lines. Pathogens and Disease, 2015, 73, .	0.8	17
22	Using the PfEMP1 Head Structure Binding Motif to Deal a Blow at Severe Malaria. PLoS ONE, 2014, 9, e88420.	1.1	8
23	Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides, 2014, 53, 210-217.	1.2	9
24	Specific Interaction between <i><scp>M</scp>ycobacterium tuberculosis</i> Lipoproteinâ€derived Peptides and Target Cells Inhibits Mycobacterial Entry <i>In Vitro</i> Chemical Biology and Drug Design, 2014, 84, 626-641.	1.5	16
25	Protecting capacity against malaria of chemically defined tetramer forms based on the Plasmodium falciparum apical sushi protein as potential vaccine components. Biochemical and Biophysical Research Communications, 2014, 451, 15-23.	1.0	5
26	Annotation and characterization of the Plasmodium vivax rhoptry neck protein 4 (Pv RON4). Malaria Journal, 2013, 12, 356.	0.8	27
27	Rh1 high activity binding peptides inhibit high percentages of Plasmodium falciparum FVO strain invasion. Vaccine, 2013, 31, 1830-1837.	1.7	8
28	Mammaglobin peptide as a novel biomarker for breast cancer detection. Cancer Biology and Therapy, 2013, 14, 327-332.	1.5	15
29	The role of Mycobacterium tuberculosis Rv3166c protein-derived high-activity binding peptides in inhibiting invasion of human cell lines. Protein Engineering, Design and Selection, 2012, 25, 235-242.	1.0	8
30	A single amino acid change in the Plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine, 2012, 30, 637-646.	1.7	17
31	Mycobacterium tuberculosis surface protein Rv0227c contains high activity binding peptides which inhibit cell invasion. Peptides, 2012, 38, 208-216.	1.2	9
32	Peptides derived from Mycobacterium tuberculosis Rv2301 protein are involved in invasion to human epithelial cells and macrophages. Amino Acids, 2012, 42, 2067-2077.	1.2	12
33	Binding activity, structure, and immunogenicity of synthetic peptides derived from Plasmodium falciparum CelTOS and TRSP proteins. Amino Acids, 2012, 43, 365-378.	1.2	7
34	Identification of the Plasmodium falciparum rhoptry neck protein 5 (PfRON5). Gene, 2011, 474, 22-28.	1.0	19
35	Biological and structural characteristics of the binding peptides from the sporozoite proteins essential for cell traversal (SPECT)-1 and -2. Peptides, 2011, 32, 154-160.	1.2	12
36	Synthetic peptides from two Pf sporozoite invasion-associated proteins specifically interact with HeLa and HepG2 cells. Peptides, 2011, 32, 1902-1908.	1.2	10

3

#	Article	lF	Citations
37	Pv RON2, a new Plasmodium vivax rhoptry neck antigen. Malaria Journal, 2011, 10, 60.	0.8	35
38	Functional, Immunological and Three-Dimensional Analysis of Chemically Synthesised Sporozoite Peptides as Components of a Fully-Effective Antimalarial Vaccine. Current Medicinal Chemistry, 2011, 18, 4470-4502.	1,2	25
39	Fine mapping of Plasmodium falciparum ribosomal phosphoprotein PfPO revealed sequences with highly specific binding activity to human red blood cells. Journal of Molecular Medicine, 2010, 88, 61-74.	1.7	3
40	Mycobacterium tuberculosis Rv0679c protein sequences involved in host-cell infection: Potential TB vaccine candidate antigen. BMC Microbiology, 2010, 10, 109.	1.3	22
41	Conserved regions from <i>Plasmodium falciparum</i> MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells. Journal of Cellular Biochemistry, 2010, 110, 882-892.	1.2	2
42	Peptides from the Mycobacterium tuberculosis Rv1980c protein involved in human cell infection: insights into new synthetic subunit vaccine candidates. Biological Chemistry, 2010, 391, 207-217.	1.2	8
43	Well-Defined Regions of the <i>Plasmodium falciparum</i> Reticulocyte Binding Protein Homologue 4 Mediate Interaction with Red Blood Cell Membrane. Journal of Medicinal Chemistry, 2010, 53, 811-821.	2.9	7
44	Conserved high activity binding peptides from the Plasmodium falciparum Pf34 rhoptry protein inhibit merozoites in vitro invasion of red blood cells. Peptides, 2010, 31, 1987-1994.	1.2	13
45	Conserved regions of the Plasmodium falciparum rhoptry-associated protein 3 mediate specific host-pathogen interactions during invasion of red blood cells. Peptides, 2010, 31, 2165-2172.	1.2	4
46	Sequences of the Plasmodium falciparum cytoadherence-linked asexual protein 9 implicated in malaria parasite invasion to erythrocytes. Vaccine, 2010, 28, 2653-2663.	1.7	7
47	Conserved High Activity Binding Peptides are Involved in Adhesion of Two Detergent-Resistant Membrane-Associated Merozoite Proteins to Red Blood Cells during Invasion. Journal of Medicinal Chemistry, 2010, 53, 3907-3918.	2.9	12
48	Identification of conserved erythrocyte binding regions in members of the Plasmodium falciparum Cys6 lipid raft-associated protein family. Vaccine, 2009, 27, 3953-3962.	1.7	28
49	Synthetic peptides from conserved regions of the Plasmodium falciparum early transcribed membrane and ring exported proteins bind specifically to red blood cell proteins. Vaccine, 2009, 27, 6877-6886.	1.7	8
50	A Maurer's cleft-associated Plasmodium falciparum membrane-associated histidine-rich protein peptide specifically interacts with the erythrocyte membrane. Biochemical and Biophysical Research Communications, 2009, 380, 122-126.	1.0	6
51	Characterizing the <i>Mycobacterium tuberculosis</i> Rv2707 protein and determining its sequences which specifically bind to two human cell lines. Protein Science, 2008, 17, 342-351.	3.1	14
52	Identification of <i>Plasmodium falciparum </i> RhopH3 protein peptides that specifically bind to erythrocytes and inhibit merozoite invasion. Protein Science, 2008, 17, 1719-1730.	3.1	15
53	Characterization of <i>Plasmodium falciparum</i> integral membrane protein Pf25â€IMP and identification of its red blood cell binding sequences inhibiting merozoite invasion in vitro. Protein Science, 2008, 17, 1494-1504.	3.1	16
54	Intimate Molecular Interactions of <i>P. falciparum</i> Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chemical Reviews, 2008, 108, 3656-3705.	23.0	94

#	Article	IF	CITATIONS
55	Studies of Plasmodium falciparum rhoptry-associated membrane antigen (RAMA) protein peptides specifically binding to human RBC. Vaccine, 2008, 26, 853-862.	1.7	17
56	Peptides derived from the Mycobacterium tuberculosis Rv1490 surface protein implicated in inhibition of epithelial cell entry: Potential vaccine candidates?. Vaccine, 2008, 26, 4387-4395.	1.7	10
57	High affinity interactions between red blood cell receptors and synthetic Plasmodium thrombospondin-related apical merozoite protein (PTRAMP) peptides. Biochimie, 2008, 90, 802-810.	1.3	5
58	Identification of peptides with high red blood cell and hepatocyte binding activity in the Plasmodium falciparum multi-stage invasion proteins: PfSPATR and MCP-1. Biochimie, 2008, 90, 1750-1759.	1.3	7
59	Functional characterization of Mycobacterium tuberculosis Rv2969c membrane protein. Biochemical and Biophysical Research Communications, 2008, 372, 935-940.	1.0	11
60	Structural modifications to a high-activity binding peptide located within the PfEMP1 NTS domain induce protection against P. falciparum malaria in Aotus monkeys. Biological Chemistry, 2007, 388, 25-36.	1.2	10
61	Characterisation of Plasmodium falciparum RESA-like protein peptides that bind specifically to erythrocytes and inhibit invasion. Biological Chemistry, 2007, 388, 15-24.	1.2	4
62	Identifying Merozoite Surface Protein 4 and Merozoite Surface Protein 7 <i>Plasmodium falciparum</i> Protein Family Members Specifically Binding to Human Erythrocytes Suggests a New Malarial Parasite-Redundant Survival Mechanism. Journal of Medicinal Chemistry, 2007, 50, 5665-5675.	2.9	18
63	The <i>Mycobacterium tuberculosis</i> membrane protein Rv2560â€fâ^'â€fbiochemical and functional studies. FEBS Journal, 2007, 274, 6352-6364.	2.2	13
64	Plasmodium falciparum TryThrA antigen synthetic peptides block in vitro merozoite invasion to erythrocytes. Biochemical and Biophysical Research Communications, 2006, 339, 888-896.	1.0	18
65	Synthetic peptides from PlasmodiumÂfalciparum apical membrane antigen 1 (AMA-1) specifically interacting with human hepatocytes. Biochimie, 2006, 88, 1447-1455.	1.3	9
66	Plasmodium falciparum merozoite surface protein 6 (MSP-6) derived peptides bind erythrocytes and partially inhibit parasite invasion. Peptides, 2006, 27, 1685-1692.	1.2	14
67	Identifying Plasmodium falciparum cytoadherence-linked asexual protein 3 (CLAG 3) sequences that specifically bind to C32 cells and erythrocytes. Protein Science, 2005, 14, 504-513.	3.1	16
68	Mycobacterium tuberculosisRv2536 protein implicated in specific binding to human cell lines. Protein Science, 2005, 14, 2236-2245.	3.1	17
69	Identifying putativeMycobacterium tuberculosisRv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells. Protein Science, 2005, 14, 2767-2780.	3.1	23
70	P. falciparum pro-histoaspartic protease (proHAP) protein peptides bind specifically to erythrocytes and inhibit the invasion process in vitro. Biological Chemistry, 2005, 386, 361-7.	1.2	2
71	Characterising Mycobacterium tuberculosis Rv1510c protein and determining its sequences that specifically bind to two target cell lines. Biochemical and Biophysical Research Communications, 2005, 332, 771-781.	1.0	18
72	Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie, 2005, 87, 461-472.	1.3	21

#	Article	IF	CITATIONS
73	Amino terminal peptides from the Plasmodium falciparum EBA-181/JESEBL protein bind specifically to erythrocytes and inhibit in vitro merozoite invasion. Biochimie, 2005, 87, 425-436.	1.3	9
74	Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells. Peptides, 2005, 26, 1133-1143.	1.2	18
75	Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Science, 2005, 14, 464-473.	3.1	14
76	IdentifyingPlasmodium falciparummerozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Science, 2005, 14, 1778-1786.	3.1	20
77	Liver stage antigen 3 Plasmodium falciparum peptides specifically interacting with HepG2 cells. Journal of Molecular Medicine, 2004, 82, 600-11.	1.7	9
78	Identification of Plasmodium falciparum reticulocyte binding protein RBP-2 homologue a and b (PfRBP-2-Ha and -Hb) sequences that specifically bind to erythrocytes. Parasitology International, 2004, 53, 77-88.	0.6	16
79	Plasmodium falciparum: red blood cell binding studies using peptides derived from rhoptry-associated protein 2 (RAP2). Biochimie, 2004, 86, 1-6.	1.3	16
80	MAEBL Plasmodium falciparum protein peptides bind specifically to erythrocytes and inhibit in vitro merozoite invasion. Biochemical and Biophysical Research Communications, 2004, 315, 319-329.	1.0	16
81	Identifying Plasmodium falciparum EBA-175 homologue sequences that specifically bind to human erythrocytes. Biochemical and Biophysical Research Communications, 2004, 321, 835-844.	1.0	7
82	Changing ABRA protein peptide to fit into the HLA-DR \hat{l}^2 1*0301 molecule renders it protection-inducing. Biochemical and Biophysical Research Communications, 2004, 322, 119-125.	1.0	15
83	Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum-derived rhoptry-associated protein 1 peptides. Vaccine, 2004, 22, $1054-1062$.	1.7	14
84	Sporozoite and Liver Stage Antigen Plasmodium falciparum peptides bind specifically to human hepatocytes. Vaccine, 2004, 22, 1150-1156.	1.7	13
85	Human papillomavirus type 16 and 18 L1 protein peptide binding to VERO and HeLa cells inhibits their VLPs binding. International Journal of Cancer, 2003, 107, 416-424.	2.3	13
86	Plasmodium falciparum EBA-140 kDa protein peptides that bind to human red blood cells. Chemical Biology and Drug Design, 2003, 62, 175-184.	1.2	14
87	Peptides of the liver stage antigen-1 (LSA-1) of Plasmodium falciparum bind to human hepatocytes. Peptides, 2003, 24, 647-657.	1.2	18
88	P. falciparum: merozoite surface protein-8 peptides bind specifically to human erythrocytes. Peptides, 2003, 24, 1015-1023.	1.2	21
89	Plasmodium falciparum normocyte binding protein (PfNBP-1) peptides bind specifically to human erythrocytes. Peptides, 2003, 24, 1007-1014.	1.2	15
90	Identification of specific Hep G2 cell binding regions in Plasmodium falciparum sporozoite–threonine–asparagine-rich protein (STARP). Vaccine, 2003, 21, 2404-2411.	1.7	9

#	Article	IF	CITATION
91	Hepatitis C virus (HCV) E1 and E2 protein regions that specifically bind to HepG2 cells. Journal of Hepatology, 2002, 36, 254-262.	1.8	40
92	Plasmodium vivax Duffy binding protein peptides specifically bind to reticulocytes. Peptides, 2002, 23, 13-22.	1.2	37
93	Identification and polymorphism of Plasmodium vivax RBP-1 peptides which bind specifically to reticulocytes. Peptides, 2002, 23, 2265-2277.	1.2	31
94	Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine, 2002, 20, 1331-1339.	1.7	56
95	Plasmodium falciparum acid basic repeat antigen (ABRA) peptides: erythrocyte binding and biological activity. Vaccine, 2001, 19, 4496-4504.	1.7	49
96	Plasmodium falciparum circumsporozoite (CS) protein peptides specifically bind to HepG2 cells. Vaccine, 2001, 19, 4487-4495.	1.7	27
97	Plasmodium falciparum: binding studies of peptide derived from the sporozoite surface protein 2 to Hep G2 cells. Chemical Biology and Drug Design, 2001, 58, 285-292.	1.2	13
98	Plasmodium falciparum EBA-175 kDa protein peptides which bind to human red blood cells. Parasitology, 2000, 120, 225-235.	0.7	91
99	Two MSAâ \in f2 peptides that bind to human red blood cells are relevant to Plasmodium falciparum merozoite invasion. Chemical Biology and Drug Design, 2000, 55, 216-223.	1.2	54
100	A GBP 130 derived peptide from Plasmodium falciparum binds to human erythrocytes and inhibits merozoite invasion in vitro. Memorias Do Instituto Oswaldo Cruz, 2000, 95, 495-501.	0.8	12
101	Plasmodium falciparum: red blood cell binding studies of peptides derived from histidine-rich KAHRP-I, HRP-II and HRP-III proteins. Acta Tropica, 2000, 75, 349-359.	0.9	23
102	Identification of Plasmodium falciparum MSPâ€1 peptides able to bind to human red blood cells. Parasite Immunology, 1996, 18, 515-526.	0.7	132