Prasad N Paradkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5531705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Inhibition of Marek's Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4. Microorganisms, 2021, 9, 164.	3.6	20
2	Advances in Understanding Vector Behavioural Traits after Infection. Pathogens, 2021, 10, 1376.	2.8	14
3	Towards Integrated Management of Dengue in Mumbai. Viruses, 2021, 13, 2436.	3.3	4
4	Superinfection Exclusion in Mosquitoes and Its Potential as an Arbovirus Control Strategy. Viruses, 2020, 12, 1259.	3.3	13
5	Core commitments for field trials of gene drive organisms. Science, 2020, 370, 1417-1419.	12.6	67
6	Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLoS Pathogens, 2020, 16, e1008103.	4.7	69
7	Virology Downunder, a meeting commentary from the 2019 Lorne Infection and Immunity Conference, Australia. Virology Journal, 2019, 16, 109.	3.4	0
8	Whole Transcriptome Analysis of Aedes albopictus Mosquito Head and Thorax Post-Chikungunya Virus Infection. Pathogens, 2019, 8, 132.	2.8	10
9	RNASeq Analysis of Aedes albopictus Mosquito Midguts after Chikungunya Virus Infection. Viruses, 2019, 11, 513.	3.3	24
10	Virology at the Lorne Infection and Immunity Conference 2019. Virologica Sinica, 2019, 34, 474-474.	3.0	0
11	Engineered resistance to Zika virus in transgenic <i>Aedes aegypti</i> expressing a polycistronic cluster of synthetic small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3656-3661.	7.1	83
12	A Role for the Insulin Receptor in the Suppression of Dengue Virus and Zika Virus in Wolbachia-Infected Mosquito Cells. Cell Reports, 2019, 26, 529-535.e3.	6.4	38
13	Neurotropism and behavioral changes associated with Zika infection in the vector <i>Aedes aegypti</i> . Emerging Microbes and Infections, 2018, 7, 1-11.	6.5	30
14	Dengue virus infection changes Aedes aegypti oviposition olfactory preferences. Scientific Reports, 2018, 8, 13179.	3.3	24
15	Electrophysiological evidence of RML12 mosquito cell line towards neuronal differentiation by 20-hydroxyecdysdone. Scientific Reports, 2018, 8, 10109.	3.3	5
16	Zika virus-induced hyper excitation precedes death of mouse primary neuron. Virology Journal, 2018, 15, 79.	3.4	28
17	Zika vector transmission risk in temperate Australia: a vector competence study. Virology Journal, 2017, 14, 108.	3.4	51
18	Iron availability affects West Nile virus infection in its mosquito vector. Virology Journal, 2017, 14, 103.	3.4	26

2

PRASAD N PARADKAR

#	Article	IF	CITATIONS
19	Assessment of ICount software, a precise and fast egg counting tool for the mosquito vector Aedes aegypti. Parasites and Vectors, 2016, 9, 590.	2.5	23
20	Wongabel Rhabdovirus Accessory Protein U3 Targets the SWI/SNF Chromatin Remodeling Complex. Journal of Virology, 2015, 89, 1377-1388.	3.4	2
21	Evolution of Genome Size and Complexity in the Rhabdoviridae. PLoS Pathogens, 2015, 11, e1004664.	4.7	149
22	Cullin4 Is Pro-Viral during West Nile Virus Infection of Culex Mosquitoes. PLoS Pathogens, 2015, 11, e1005143.	4.7	35
23	Dicer-2-Dependent Activation of Culex Vago Occurs via the TRAF-Rel2 Signaling Pathway. PLoS Neglected Tropical Diseases, 2014, 8, e2823.	3.0	98
24	lron regulatory protein-1 protects against mitoferrin-1-deficient porphyria Journal of Biological Chemistry, 2014, 289, 13707.	3.4	0
25	Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria. Journal of Biological Chemistry, 2014, 289, 7835-7843.	3.4	34
26	Mon1a Protein Acts in Trafficking through the Secretory Apparatus. Journal of Biological Chemistry, 2012, 287, 25577-25588.	3.4	10
27	Secreted Vago restricts West Nile virus infection in <i>Culex</i> mosquito cells by activating the Jak-STAT pathway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18915-18920.	7.1	257
28	Celgosivir treatment misfolds dengue virus NS1 protein, induces cellular pro-survival genes and protects against lethal challenge mouse model. Antiviral Research, 2011, 92, 453-460.	4.1	130
29	Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Bioscience Reports, 2011, 31, 399-409.	2.4	46
30	Unfolded protein response (UPR) gene expression during antibody-dependent enhanced infection of cultured monocytes correlates with dengue disease severity. Bioscience Reports, 2011, 31, 221-230.	2.4	30
31	Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. Journal of Neurochemistry, 2010, 113, 454-464.	3.9	67
32	Flexibility between the Protease and Helicase Domains of the Dengue Virus NS3 Protein Conferred by the Linker Region and Its Functional Implications. Journal of Biological Chemistry, 2010, 285, 18817-18827.	3.4	120
33	High Affinity Human Antibody Fragments to Dengue Virus Non-Structural Protein 3. PLoS Neglected Tropical Diseases, 2010, 4, e881.	3.0	34
34	Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16263-16268.	7.1	194
35	Regulation of Mitochondrial Iron Import through Differential Turnover of Mitoferrin 1 and Mitoferrin 2. Molecular and Cellular Biology, 2009, 29, 1007-1016.	2.3	280
36	Discovery of Genes Essential for Heme Biosynthesis through Large-Scale Gene Expression Analysis. Cell Metabolism, 2009, 10, 119-130.	16.2	178

Prasad N Paradkar

#	Article	IF	CITATIONS
37	Iron depletion limits intracellular bacterial growth in macrophages. Blood, 2008, 112, 866-874.	1.4	181
38	Ironâ€depletion limits intracellular bacterial growth in macrophages. FASEB Journal, 2008, 22, 1191.1.	0.5	1
39	Mitoferrin1 Transgenic Zebrafish Line Serves as a Model to Study Erythroid Cell Fate during Hematopoiesis. Blood, 2008, 112, 3576-3576.	1.4	1
40	Abcb10 Physically Interacts with Mitoferrin1 to Enhance Its Stability for Heme Synthesis in the Erythroid Mitochondria. Blood, 2008, 112, 530-530.	1.4	0
41	Expression of the 1B isoforms of divalent metal transporter (DMT1) is regulated by interaction of NF-Y with a CCAAT-box element near the transcription start site. Journal of Cellular Physiology, 2007, 211, 183-188.	4.1	12
42	Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nature Genetics, 2007, 39, 1025-1032.	21.4	61
43	DMT1: Which metals does it transport?. Biological Research, 2006, 39, 79-85.	3.4	188
44	Post-translational and transcriptional regulation of DMT1 during P19 embryonic carcinoma cell differentiation by retinoic acid. Biochemical Journal, 2006, 394, 173-183.	3.7	38
45	Comparison of mammalian cell lines expressing distinct isoforms of divalent metal transporter 1 in a tetracycline-regulated fashion. Biochemical Journal, 2006, 398, 539-546.	3.7	68
46	Nitric oxide transcriptionally down-regulates specific isoforms of divalent metal transporter (DMT1) via NF-?B. Journal of Neurochemistry, 2006, 96, 1768-1777.	3.9	51
47	Hypoxia induces changes in expression of isoforms of the divalent metal transporter (DMT1) in rat pheochromocytoma (PC12) cells. Biochemical Pharmacology, 2005, 69, 1647-1655.	4.4	43
48	Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Letters, 2004, 215, 21-28.	7.2	90
49	Expression and localization of different forms of DMT1 in normal and tumor astroglial cells. Molecular Brain Research, 2004, 122, 62-70.	2.3	39