
Winfried Neuhaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5531472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Stem Cell Reports, 2017, 8, 894-906.	4.8	225
2	The blood-brain barrier is dysregulated in COVID-19 and serves as a CNS entry route for SARS-CoV-2. Stem Cell Reports, 2022, 17, 307-320.	4.8	138
3	The Blood–Brain Barrier as a Target in Traumatic Brain Injury Treatment. Archives of Medical Research, 2014, 45, 698-710.	3.3	107
4	A novel flow based hollow-fiber blood–brain barrier in vitro model with immortalised cell line PBMEC/C1–2. Journal of Biotechnology, 2006, 125, 127-141.	3.8	77
5	Autologous induced pluripotent stem cell-derived four-organ-chip. Future Science OA, 2019, 5, FSO413.	1.9	75
6	Transport Rankings of Non-Steroidal Antiinflammatory Drugs across Blood-Brain Barrier In Vitro Models. PLoS ONE, 2014, 9, e86806.	2.5	73
7	In Vitro Models of the Blood-Brain Barrier. Handbook of Experimental Pharmacology, 2020, 265, 75-110.	1.8	71
8	Analysing molecular polar surface descriptors to predict blood-brain barrier permeation. International Journal of Computational Biology and Drug Design, 2013, 6, 146.	0.3	65
9	Transendothelial Electrical Resistance Measurement across the Blood–Brain Barrier: A Critical Review of Methods. Micromachines, 2021, 12, 685.	2.9	58
10	The pivotal role of astrocytes in an in vitro stroke model of the blood-brain barrier. Frontiers in Cellular Neuroscience, 2014, 8, 352.	3.7	57
11	A new innovative process to produce lactose-reduced skim milk. Journal of Biotechnology, 2005, 119, 212-218.	3.8	55
12	Inhibition of Proteasomal Glucocorticoid Receptor Degradation Restores Dexamethasone-Mediated Stabilization of the Blood–Brain Barrier After Traumatic Brain Injury*. Critical Care Medicine, 2013, 41, 1305-1315.	0.9	49
13	Reversible opening of the blood-brain barrier by claudin-5-binding variants of Clostridium perfringens enterotoxin's claudin-binding domain. Biomaterials, 2018, 161, 129-143.	11.4	49
14	Effects of NMDA receptor modulators on a blood–brain barrier in vitro model. Brain Research, 2011, 1394, 49-61.	2.2	48
15	Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers, 2018, 6, 1479568.	3.2	46
16	A Microfluidic Multisize Spheroid Array for Multiparametric Screening of Anticancer Drugs and Blood–Brain Barrier Transport Properties. Advanced Science, 2021, 8, e2004856.	11.2	46
17	Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible. International Journal of Environmental Research and Public Health, 2020, 17, 8832.	2.6	45
18	Oxygen Management at the Microscale: A Functional Biochip Material with Long-Lasting and Tunable Oxygen Scavenging Properties for Cell Culture Applications. ACS Applied Materials & Interfaces, 2019, 11, 9730-9739.	8.0	42

WINFRIED NEUHAUS

#	Article	IF	CITATIONS
19	The Effects of Colloid Solutions on Renal Proximal Tubular Cells In Vitro. Anesthesia and Analgesia, 2012, 114, 371-374.	2.2	38
20	Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the upregulation of glucose uptake after subsequent reoxygenation in brain endothelial cells. Neuroscience Letters, 2012, 506, 44-49.	2.1	37
21	Transport of a GABA _A Receptor Modulator and Its Derivatives from <i>Valeriana officinalis</i> L <i>. s. l.</i> Across an <i>in Vitro</i> Cell Culture Model of the Blood-Brain Barrier. Planta Medica, 2008, 74, 1338-1344.	1.3	35
22	A Novel Tool to Characterize Paracellular Transport: The APTS–Dextran Ladder. Pharmaceutical Research, 2006, 23, 1491-1501.	3.5	34
23	Validation of in vitro cell culture models of the blood–brain barrier: Tightness characterization of two promising cell lines. Journal of Pharmaceutical Sciences, 2008, 97, 5158-5175.	3.3	34
24	Plasminogen activator inhibitorâ€1 augments damage by impairing fibrinolysis after traumatic brain injury. Annals of Neurology, 2019, 85, 667-680.	5.3	30
25	Human iPSCâ€Derived Bloodâ€Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development?. Current Protocols in Stem Cell Biology, 2020, 55, e122.	3.0	26
26	Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation, 2012, 84, 294-304.	1.9	25
27	A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behavioural Brain Research, 2018, 343, 83-94.	2.2	25
28	The pivotal role of micro-environmental cells in a human blood–brain barrier in vitro model of cerebral ischemia: functional and transcriptomic analysis. Fluids and Barriers of the CNS, 2020, 17, 19.	5.0	25
29	Expression of Claudin-1, Claudin-3 and Claudin-5 in human blood–brain barrier mimicking cell line ECV304 is inducible by glioma-conditioned media. Neuroscience Letters, 2008, 446, 59-64.	2.1	22
30	Optimization of an oral mucosa <i>in vitro</i> model based on cell line TR146. Tissue Barriers, 2020, 8, 1748459.	3.2	21
31	Blood–brain barrier cell line PBMEC/C1-2 possesses functionally active P-glycoprotein. Neuroscience Letters, 2010, 469, 224-228.	2.1	19
32	Molecular Size and Origin Do Not Influence the Harmful Side Effects of Hydroxyethyl Starch on Human Proximal Tubule Cells (HK-2) In Vitro. Anesthesia and Analgesia, 2014, 119, 570-577.	2.2	15
33	Multiple Antenatal Dexamethasone Treatment Alters Brain Vessel Differentiation in Newborn Mouse Pups. PLoS ONE, 2015, 10, e0136221.	2.5	14
34	Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation. PLoS ONE, 2015, 10, e0137247.	2.5	14
35	Hydroxyethylstarch (130/0.4) tightens the blood-brain barrier in vitro. Brain Research, 2020, 1727, 146560.	2.2	14
36	Optimization of an Innovative Hollow-Fiber Process to Produce Lactose-Reduced Skim Milk. Applied Biochemistry and Biotechnology, 2006, 134, 1-14.	2.9	13

3

WINFRIED NEUHAUS

#	Article	IF	CITATIONS
37	Stretch in Brain Microvascular Endothelial Cells (cEND) as an In Vitro Traumatic Brain Injury Model of the Blood Brain Barrier. Journal of Visualized Experiments, 2013, , e50928.	0.3	13
38	Directed Transport of CRP Across In Vitro Models of the Blood-Saliva Barrier Strengthens the Feasibility of Salivary CRP as Biomarker for Neonatal Sepsis. Pharmaceutics, 2021, 13, 256.	4.5	12
39	APTS-labeled dextran ladder: A novel tool to characterize cell layer tightness. Journal of Pharmaceutical and Biomedical Analysis, 2006, 40, 1035-1039.	2.8	11
40	A novel heterocyclic compound targeting the dopamine transporter improves performance in the radial arm maze and modulates dopamine receptors D1-D3. Behavioural Brain Research, 2016, 312, 127-137.	2.2	11
41	Transport Studies Using Blood-Brain Barrier In Vitro Models: A Critical Review and Guidelines. Handbook of Experimental Pharmacology, 2020, , 187-204.	1.8	11
42	Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Frontiers in Molecular Neuroscience, 2017, 10, 149.	2.9	10
43	Serum-Derived Immunoglobulins Neutralize Adverse Effects of Amyloid-β Peptide on the Integrity of a Blood-Brain Barrier In Vitro Model. Journal of Alzheimer's Disease, 2010, 21, 303-314.	2.6	9
44	Phosphodiesterase-4 inhibition with rolipram attenuates hepatocellular injury in hyperinflammation in vivo and in vitro without influencing inflammation and HO-1 expression. Journal of Pharmacology and Pharmacotherapeutics, 2015, 6, 13-23.	0.4	7
45	Human induced pluripotent stem cell based in vitro models of the blood-brain barrier: the future standard?. Neural Regeneration Research, 2017, 12, 1607.	3.0	6
46	An electrochemiluminescence based assay for quantitative detection of endogenous and exogenously applied MeCP2 protein variants. Scientific Reports, 2019, 9, 7929.	3.3	5
47	An In Vitro Barrier Model of the Human Submandibular Salivary Gland Epithelium Based on a Single Cell Clone of Cell Line HTB-41: Establishment and Application for Biomarker Transport Studies. Biomedicines, 2020, 8, 302.	3.2	4
48	Hydroxyethylstarch revisited for acute brain injury treatment. Neural Regeneration Research, 2021, 16, 1372.	3.0	3
49	TAT-MeCP2 protein variants rescue disease phenotypes in human and mouse models of Rett syndrome. International Journal of Biological Macromolecules, 2022, 209, 972-983.	7.5	3
50	Comparison of hydroxyethylstarch (HES 130/0.4) and 5% human albumin for volume substitution in pediatric neurosurgery: A retrospective, single center study. BMC Research Notes, 2021, 14, 434.	1.4	2