
Xuebin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530981/publications.pdf Version: 2024-02-01

XUERIN ZHANC

#	Article	IF	CITATIONS
1	Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 2006, 111, .	3.3	2,884
2	Human contribution to more-intense precipitation extremes. Nature, 2011, 470, 378-381.	27.8	1,695
3	Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 851-870.	8.1	1,325
4	Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1716-1733.	3.3	1,131
5	Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2473-2493.	3.3	1,126
6	Changes in Climate Extremes and their Impacts on the Natural Physical Environment. , 2012, , 109-230.		1,080
7	Future climate risk from compound events. Nature Climate Change, 2018, 8, 469-477.	18.8	1,074
8	Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2098-2118.	3.3	1,029
9	Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 2013, 119, 345-357.	3.6	887
10	Temperature and precipitation trends in Canada during the 20th century. Atmosphere - Ocean, 2000, 38, 395-429.	1.6	886
11	Changes in Temperature and Precipitation Extremes in the IPCC Ensemble of Global Coupled Model Simulations. Journal of Climate, 2007, 20, 1419-1444.	3.2	882
12	Detection of human influence on twentieth-century precipitation trends. Nature, 2007, 448, 461-465.	27.8	872
13	Trends in Canadian streamflow. Water Resources Research, 2001, 37, 987-998.	4.2	594
14	Rapid increase in the risk of extreme summer heat in Eastern China. Nature Climate Change, 2014, 4, 1082-1085.	18.8	544
15	Avoiding Inhomogeneity in Percentile-Based Indices of Temperature Extremes. Journal of Climate, 2005, 18, 1641-1651.	3.2	363
16	Characteristics of Daily and Extreme Temperatures over Canada. Journal of Climate, 2001, 14, 1959-1976.	3.2	349
17	Contribution of urbanization to warming in China. Nature Climate Change, 2016, 6, 706-709.	18.8	319
18	Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles. Journal of Climate, 2014, 27, 6591-6611.	3.2	283

#	Article	IF	CITATIONS
19	Anthropogenic intensification of short-duration rainfall extremes. Nature Reviews Earth & Environment, 2021, 2, 107-122.	29.7	279
20	Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change, 2010, 1, 192-211.	8.1	259
21	Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 2013, 40, 5252-5257.	4.0	254
22	Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. Journal of Geophysical Research, 2009, 114, .	3.3	239
23	Anthropogenic Influence on Long Return Period Daily Temperature Extremes at Regional Scales. Journal of Climate, 2011, 24, 881-892.	3.2	224
24	Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, 371, 1159-1162.	12.6	213
25	Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather and Climate Extremes, 2020, 29, 100269.	4.1	211
26	Large near-term projected snowpack loss over the western United States. Nature Communications, 2017, 8, 14996.	12.8	203
27	Observed Trends in Canada's Climate and Influence of Low-Frequency Variability Modes. Journal of Climate, 2015, 28, 4545-4560.	3.2	200
28	Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.	3.6	197
29	Complexity in estimating past and future extreme short-duration rainfall. Nature Geoscience, 2017, 10, 255-259.	12.9	193
30	Changes in North American extremes derived from daily weather data. Journal of Geophysical Research, 2008, 113, .	3.3	187
31	Monte Carlo Experiments on the Detection of Trends in Extreme Values. Journal of Climate, 2004, 17, 1945-1952.	3.2	184
32	Development of an Updated Global Land In Situâ€Based Data Set of Temperature and Precipitation Extremes: HadEX3. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032263.	3.3	182
33	The Influence of Large-Scale Climate Variability on Winter Maximum Daily Precipitation over North America. Journal of Climate, 2010, 23, 2902-2915.	3.2	160
34	Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. Journal of Climate, 2021, 34, 3441-3460.	3.2	132
35	Human influence has intensified extreme precipitation in North America. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13308-13313.	7.1	127
36	A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. Journal of Climate, 2021, 34, 243-258.	3.2	124

#	Article	IF	CITATIONS
37	Risks from Climate Extremes Change Differently from 1.5°C to 2.0°C Depending on Rarity. Earth's Future, 2018, 6, 704-715.	6.3	117
38	Anthropogenic climate change detected in European renewable freshwater resources. Nature Climate Change, 2017, 7, 813-816.	18.8	103
39	Toward Regional-Scale Climate Change Detection. Journal of Climate, 2003, 16, 793-797.	3.2	97
40	Comment on "Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test―by Sheng Yue and Chun Yuan Wang. Water Resources Research, 2004, 40, .	4.2	94
41	Detecting human influence on extreme temperatures in China. Geophysical Research Letters, 2013, 40, 1171-1176.	4.0	91
42	Multimodel Detection and Attribution of Extreme Temperature Changes. Journal of Climate, 2013, 26, 7430-7451.	3.2	86
43	Additional risk in extreme precipitation in China from 1.5â€ [–] °C to 2.0â€ [–] °C global warming levels. Science Bulletin, 2018, 63, 228-234.	9.0	78
44	Downscaling and Projection of Winter Extreme Daily Precipitation over North America. Journal of Climate, 2008, 21, 923-937.	3.2	77
45	Human influence on Arctic sea ice detectable from early 1990s onwards. Geophysical Research Letters, 2008, 35, .	4.0	77
46	Larger Increases in More Extreme Local Precipitation Events as Climate Warms. Geophysical Research Letters, 2019, 46, 6885-6891.	4.0	76
47	Attribution of extreme temperature changes during 1951–2010. Climate Dynamics, 2016, 46, 1769-1782.	3.8	74
48	Understanding human influence on climate change in China. National Science Review, 2022, 9, nwab113.	9.5	70
49	Determining the Anthropogenic Greenhouse Gas Contribution to the Observed Intensification of Extreme Precipitation. Geophysical Research Letters, 2020, 47, e2019GL086875.	4.0	66
50	Multimodel Multisignal Climate Change Detection at Regional Scale. Journal of Climate, 2006, 19, 4294-4307.	3.2	63
51	Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Climate Dynamics, 2009, 32, 95-111.	3.8	62
52	Substantial Increase in Heat Wave Risks in China in a Future Warmer World. Earth's Future, 2018, 6, 1528-1538.	6.3	58
53	Causes of Robust Seasonal Land Precipitation Changes*. Journal of Climate, 2013, 26, 6679-6697.	3.2	57
54	How Much Information Is Required to Well Constrain Local Estimates of Future Precipitation Extremes?. Earth's Future, 2019, 7, 11-24.	6.3	55

#	Article	IF	CITATIONS
55	Understanding the Dynamics of Future Changes in Extreme Precipitation Intensity. Geophysical Research Letters, 2018, 45, 2870-2878.	4.0	54
56	Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 ŰC, 2.0 ŰC, 2.5 ŰC and 3.0 ŰC. Environmental Research Letters, 2019, 14, 074005.	5.2	50
57	Detection of anthropogenic influence on the intensity of extreme temperatures in China. International Journal of Climatology, 2017, 37, 1229-1237.	3.5	49
58	Anthropogenic influence on the frequency of extreme temperatures in China. Geophysical Research Letters, 2016, 43, 6511-6518.	4.0	48
59	Observed changes in temperature extremes over Asia and their attribution. Climate Dynamics, 2018, 51, 339-353.	3.8	45
60	Observed Trends in Severe Weather Conditions Based on Humidex, Wind Chill, and Heavy Rainfall Events in Canada for 1953–2012. Atmosphere - Ocean, 2015, 53, 383-397.	1.6	44
61	Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Climate Dynamics, 2015, 45, 1713-1726.	3.8	42
62	On the Emergence of Anthropogenic Signal in Extreme Precipitation Change Over China. Geophysical Research Letters, 2018, 45, 9179-9185.	4.0	40
63	Contribution of Global warming and Urbanization to Changes in Temperature Extremes in Eastern China. Geophysical Research Letters, 2019, 46, 11426-11434.	4.0	40
64	Rapid Warming in Summer Wet Bulb Globe Temperature in China with Human-Induced Climate Change. Journal of Climate, 2020, 33, 5697-5711.	3.2	40
65	El Niño–Southern Oscillation influence on winter maximum daily precipitation in California in a spatial model. Water Resources Research, 2011, 47, .	4.2	39
66	Human influence on frequency of temperature extremes. Environmental Research Letters, 2020, 15, 064014.	5.2	38
67	Changing growing season observed in Canada. Climatic Change, 2012, 112, 339-353.	3.6	37
68	Recent Very Hot Summers in Northern Hemispheric Land Areas Measured by Wet Bulb Globe Temperature Will Be the Norm Within 20 Years. Earth's Future, 2017, 5, 1203-1216.	6.3	37
69	Indices of Canada's future climate for general and agricultural adaptation applications. Climatic Change, 2018, 148, 249-263.	3.6	25
70	Evaluating modelâ€simulated variability in temperature extremes using modified percentile indices. International Journal of Climatology, 2014, 34, 3304-3311.	3.5	24
71	Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data. Climatic Change, 2016, 134, 255-267.	3.6	24
72	Multimodel detection and attribution of changes in warm and cold spell durations. Environmental Research Letters, 2018, 13, 074013.	5.2	24

#	Article	IF	CITATIONS
73	Human influence on Canadian temperatures. Climate Dynamics, 2019, 52, 479-494.	3.8	23
74	Importance of Framing for Extreme Event Attribution: The Role of Spatial and Temporal Scales. Earth's Future, 2019, 7, 1192-1204.	6.3	21
75	Widespread persistent changes to temperature extremes occurred earlier than predicted. Scientific Reports, 2018, 8, 1007.	3.3	19
76	Risks of temperature extremes over China under 1.5°C and 2°C global warming. Advances in Climate Change Research, 2020, 11, 172-184.	5.1	18
77	Automated selection of r for the r largest order statistics approach with adjustment for sequential testing. Statistics and Computing, 2017, 27, 1435-1451.	1.5	16
78	An Evaluation of Block-Maximum-Based Estimation of Very Long Return Period Precipitation Extremes with a Large Ensemble Climate Simulation. Journal of Climate, 2020, 33, 6957-6970.	3.2	16
79	A Comparison of Intra-Annual and Long-Term Trend Scaling of Extreme Precipitation with Temperature in a Large-Ensemble Regional Climate Simulation. Journal of Climate, 2020, 33, 9233-9245.	3.2	16
80	Quantifying the Human Influence on the Intensity of Extreme 1- and 5-Day Precipitation Amounts at Global, Continental, and Regional Scales. Journal of Climate, 2022, 35, 195-210.	3.2	10
81	A bivariate approach to estimating the probability of very extreme precipitation events. Weather and Climate Extremes, 2020, 30, 100290.	4.1	9
82	Strong Influence of Eddy Length on Boreal Summertime Extreme Precipitation Projections. Geophysical Research Letters, 2018, 45, 10,665-10,672.	4.0	8
83	Probable maximum precipitation in a warming climate over North America in CanRCM4 and CRCM5. Climatic Change, 2020, 158, 611-629.	3.6	8
84	Improving the Estimation of Human Climate Influence by Selecting Appropriate Forcing Simulations. Geophysical Research Letters, 2021, 48, e2021GL095500.	4.0	7
85	On the Optimal Design of Field Significance Tests for Changes in Climate Extremes. Geophysical Research Letters, 2021, 48, e2021GL092831.	4.0	6
86	On estimating long period wind speed return levels from annual maxima. Weather and Climate Extremes, 2021, 34, 100388.	4.1	5
87	Human influence on daily temperature variability over land. Environmental Research Letters, 2021, 16, 094026.	5.2	3
88	Using a model comparison to support the interpretation of extreme event attribution. Weather and Climate Extremes, 2022, 36, 100444.	4.1	0