Willem Jh Van Berkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5530817/publications.pdf Version: 2024-02-01

WILLEM IN VAN REDKEL

#	Article	IF	CITATIONS
1	Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. Journal of Biotechnology, 2006, 124, 670-689.	3.8	611
2	Flavin dependent monooxygenases. Archives of Biochemistry and Biophysics, 2014, 544, 2-17.	3.0	430
3	Baeyer–Villiger Monooxygenases, an Emerging Family of Flavin-Dependent Biocatalysts. Advanced Synthesis and Catalysis, 2003, 345, 667-678.	4.3	250
4	Flavoenzymes. Current Opinion in Chemical Biology, 2007, 11, 195-202.	6.1	240
5	Mical links semaphorins to F-actin disassembly. Nature, 2010, 463, 823-827.	27.8	229
6	Structure and mechanism of paraâ€hydroxybenzoate hydroxylase. FASEB Journal, 1995, 9, 476-483.	0.5	209
7	Oxidoreductases on their way to industrial biotransformations. Biotechnology Advances, 2017, 35, 815-831.	11.7	205
8	Identification of a Baeyer-Villiger monooxygenase sequence motif. FEBS Letters, 2002, 518, 43-47.	2.8	193
9	Discovery of the combined oxidative cleavage of plant xylan and cellulose by a new fungal polysaccharide monooxygenase. Biotechnology for Biofuels, 2015, 8, 101.	6.2	187
10	Pro-Oxidant Activity of Flavonoids Induces EpRE-Mediated Gene Expression. Chemical Research in Toxicology, 2006, 19, 1499-1505.	3.3	185
11	Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10603-10608.	7.1	157
12	Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Structure, 1997, 5, 907-920.	3.3	154
13	Novel peptides with tyrosinase inhibitory activity. Peptides, 2007, 28, 485-495.	2.4	154
14	A novel oxidoreductase family sharing a conserved FAD-binding domain. Trends in Biochemical Sciences, 1998, 23, 206-207.	7.5	141
15	Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Science, 1997, 6, 2454-2458.	7.6	132
16	Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1 differ in substrate preference and reducing agent specificity. Biotechnology for Biofuels, 2016, 9, 186.	6.2	132
17	4-Hydroxyacetophenone monooxygenase fromPseudomonas fluorescensACB. FEBS Journal, 2001, 268, 2547-2557.	0.2	131
18	Peroxygenaseâ€Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol. Angewandte Chemie - International Edition, 2016, 55, 798-801.	13.8	128

#	Article	IF	CITATIONS
19	Purification and characterization of vanillyl-alcohol oxidase from Penicillium simplicissimum. A novel aromatic alcohol oxidase containing covalently bound FAD. FEBS Journal, 1992, 208, 651-657.	0.2	124
20	Hydrocarbon Synthesis via Photoenzymatic Decarboxylation of Carboxylic Acids. Journal of the American Chemical Society, 2019, 141, 3116-3120.	13.7	123
21	Phenol Hydroxylase from Bacillus thermoglucosidasius A7, a Two-protein Component Monooxygenase with a Dual Role for FAD. Journal of Biological Chemistry, 2003, 278, 47545-47553.	3.4	120
22	Crystal Structures of Wild-Type p-Hydroxybenzoate Hydroxylase Complexed with 4-Aminobenzoate, 2,4-Dihydroxybenzoate, and 2-Hydroxy-4-aminobenzoate and of the Tyr222Ala Mutant Complexed with 2-Hydroxy-4-aminobenzoate. Evidence for a Proton Channel and a New Binding Mode of the Flavin Ring. Biochemistry, 1994, 33, 10161-10170.	2.5	119
23	Evaluation of the Effect of Germination on Phenolic Compounds and Antioxidant Activities in Sorghum Varieties. Journal of Agricultural and Food Chemistry, 2005, 53, 2581-2588.	5.2	118
24	3DM: Systematic analysis of heterogeneous superfamily data to discover protein functionalities. Proteins: Structure, Function and Bioinformatics, 2010, 78, NA-NA.	2.6	115
25	Identification of a Novel Self-Sufficient Styrene Monooxygenase from <i>Rhodococcus opacus</i> 1CP. Journal of Bacteriology, 2009, 191, 4996-5009.	2.2	114
26	Deflavination and reconstitution of flavoproteins. FEBS Journal, 2003, 270, 4227-4242.	0.2	110
27	Covalent Flavinylation Is Essential for Efficient Redox Catalysis in Vanillyl-alcohol Oxidase. Journal of Biological Chemistry, 1999, 274, 35514-35520.	3.4	108
28	The growing VAO flavoprotein family. Archives of Biochemistry and Biophysics, 2008, 474, 292-301.	3.0	107
29	Detection of intact megaDalton protein assemblies of vanillylâ€alcohol oxidase by mass spectrometry. Protein Science, 2000, 9, 435-439.	7.6	97
30	Comparison of Content in Phenolic Compounds, Polyphenol Oxidase, and Peroxidase in Grains of Fifty Sorghum Varieties from Burkina Faso. Journal of Agricultural and Food Chemistry, 2002, 50, 3780-3788.	5.2	95
31	Distinct Substrate Specificities and Electron-Donating Systems of Fungal Lytic Polysaccharide Monooxygenases. Frontiers in Microbiology, 2018, 9, 1080.	3.5	92
32	Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. Journal of Chemical Ecology, 2005, 31, 2671-2688.	1.8	91
33	Substrate Specificity of Flavin-Dependent Vanillyl-Alcohol Oxidase from Penicillium Simplicissimum. Evidence for the Production of 4-Hydroxycinnamyl Alcohols from 4-Allylphenols. FEBS Journal, 1995, 234, 271-277.	0.2	89
34	Catalytic and Structural Features of Flavoprotein Hydroxylases and Epoxidases. Advanced Synthesis and Catalysis, 2011, 353, 2301-2319.	4.3	89
35	Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts, 2017, 7, 130.	3.5	89
36	Occurrence and Biocatalytic Potential of Carbohydrate Oxidases. Advances in Applied Microbiology, 2006, 60, 17-54.	2.4	87

#	Article	IF	CITATIONS
37	Three-dimensional Structure of Lipoamide Dehydrogenase from Pseudomonas fluorescens at 2·8 Ã Resolution. Journal of Molecular Biology, 1993, 230, 1200-1215.	4.2	86
38	<scp>l</scp> â€Galactonoâ€Î³â€lactone dehydrogenase from <i>Arabidopsis thaliana</i> , a flavoprotein involved in vitamin C biosynthesis. FEBS Journal, 2008, 275, 713-726.	4.7	86
39	Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks. Biotechnology for Biofuels, 2017, 10, 121.	6.2	86
40	ldentification of a Gatekeeper Residue That Prevents Dehydrogenases from Acting as Oxidases. Journal of Biological Chemistry, 2009, 284, 4392-4397.	3.4	83
41	Catalytic Mechanism of the Oxidative Demethylation of 4-(Methoxymethyl)phenol by Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 1997, 272, 18111-18116.	3.4	79
42	Spectral and catalytic properties of aryl-alcohol oxidase, a fungal flavoenzyme acting on polyunsaturated alcohols. Biochemical Journal, 2005, 389, 731-738.	3.7	79
43	Differential induction of rat hepatic glutathione S-transferase isoenzymes by hexachlorobenzene and benzyl isothiocyanate. Biochemical Pharmacology, 1988, 37, 1077-1082.	4.4	78
44	Purification and Characterization of an Intracellular Catalase-Peroxidase from Penicillium Simplicissimum. FEBS Journal, 1996, 235, 192-198.	0.2	78
45	Flavoprotein monooxygenases: Versatile biocatalysts. Biotechnology Advances, 2021, 51, 107712.	11.7	78
46	Correlated mutation analyses on superâ€family alignments reveal functionally important residues. Proteins: Structure, Function and Bioinformatics, 2009, 76, 608-616.	2.6	77
47	Enzymatic Synthesis of Vanillin. Journal of Agricultural and Food Chemistry, 2001, 49, 2954-2958.	5.2	76
48	Inversion of stereospecificity of vanillyl-alcohol oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 9455-9460.	7.1	74
49	StyA1 and StyA2B from <i>Rhodococcus opacus</i> 1CP: a Multifunctional Styrene Monooxygenase System. Journal of Bacteriology, 2010, 192, 5220-5227.	2.2	72
50	Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation–Strain-Promoted (4 + 2) Cycloaddition. Bioconjugate Chemistry, 2017, 28, 1189-1193.	3.6	71
51	Structural Studies on Flavin Reductase PheA2 Reveal Binding of NAD in an Unusual Folded Conformation and Support Novel Mechanism of Action. Journal of Biological Chemistry, 2004, 279, 12860-12867.	3.4	69
52	Two-Component FAD-Dependent Monooxygenases: Current Knowledge and Biotechnological Opportunities. Biology, 2018, 7, 42.	2.8	68
53	Changing the Substrate Reactivity of 2-Hydroxybiphenyl 3-Monooxygenase from Pseudomonas azelaica HBP1 by Directed Evolution. Journal of Biological Chemistry, 2002, 277, 5575-5582.	3.4	66
54	The equilibrium unfolding of <i>Azotobacter vinelandii</i> apoflavodoxin II occurs via a relatively stable folding intermediate. Protein Science, 1998, 7, 2331-2344.	7.6	64

#	Article	IF	CITATIONS
55	Horseradish Peroxidase-Catalyzed Cross-Linking of Feruloylated Arabinoxylans with β-Casein. Journal of Agricultural and Food Chemistry, 2004, 52, 6633-6639.	5.2	64
56	Structural Analysis of Flavinylation in Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 2000, 275, 38654-38658.	3.4	63
57	Crystal structure of <i>p</i> â€hydroxybenzoate hydroxylase reconstituted with the modified fad present in alcohol oxidase from methylotrophic yeasts: Evidence for an arabinoflavin. Protein Science, 1994, 3, 2245-2253.	7.6	61
58	Role of Tyr201 and Tyr385 in substrate activation by p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. FEBS Journal, 1993, 216, 137-146.	0.2	59
59	Substitution of Arg214 at the substrate-binding site of p, -hydroxybenzoate hydroxylase from Pseudomonas fluorescens. FEBS Journal, 1992, 210, 411-419.	0.2	58
60	Galactonolactone Dehydrogenase Requires a Redox-Sensitive Thiol for Optimal Production of Vitamin C. Plant Physiology, 2009, 150, 596-605.	4.8	58
61	More efficient redox biocatalysis by utilising 1,4-butanediol as a â€~smart cosubstrate'. Green Chemistry, 2013, 15, 330.	9.0	56
62	A Study of p-Hydroxybenzoate Hydroxylase from Pseudomonas fluorescens. Improved Purification, Relative Molecular Mass, and Amino Acid Composition. FEBS Journal, 1979, 101, 235-244.	0.2	55
63	Switch of coenzyme specificity of p -hydroxybenzoate hydroxylase 1 1Edited by A. R. Fersht. Journal of Molecular Biology, 1999, 292, 87-96.	4.2	55
64	Last In, First Out. Journal of Biological Chemistry, 2005, 280, 7836-7844.	3.4	55
65	Flavoenzyme-Catalyzed Oxygenations and Oxidations of Phenolic Compounds. Advanced Synthesis and Catalysis, 2002, 344, 1023-1035.	4.3	54
66	Elucidation of the 4-Hydroxyacetophenone Catabolic Pathway in Pseudomonas fluorescens ACB. Journal of Bacteriology, 2008, 190, 5190-5198.	2.2	53
67	Hydroquinone Dioxygenase from <i>Pseudomonas fluorescens</i> ACB: a Novel Member of the Family of Nonheme-Iron(II)-Dependent Dioxygenases. Journal of Bacteriology, 2008, 190, 5199-5209.	2.2	53
68	Encapsulation of GFP in Complex Coacervate Core Micelles. Biomacromolecules, 2015, 16, 1542-1549.	5.4	53
69	Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. FEBS Journal, 2000, 267, 6832-6840.	0.2	51
70	Quantification of the catalytic performance of C1-cellulose-specific lytic polysaccharide monooxygenases. Applied Microbiology and Biotechnology, 2018, 102, 1281-1295.	3.6	51
71	Frontier orbital study on the 4-hydroxybenzoate-3-hydroxylase-dependent activity with benzoate derivatives. FEBS Journal, 1992, 206, 479-484.	0.2	49
72	19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation, 1998, 9, 475-486.	3.0	49

#	Article	IF	CITATIONS
73	Interdomain binding of NADPH in p-Hydroxybenzoate Hydroxylase as Suggested by Kinetic, Crystallographic and Modeling Studies of Histidine 162 and Arginine 269 Variants. Journal of Biological Chemistry, 1998, 273, 21031-21039.	3.4	49
74	Stereoselective Carveol Dehydrogenase from Rhodococcus erythropolis DCL14. Journal of Biological Chemistry, 1999, 274, 26296-26304.	3.4	49
75	Degradation of 3,4â€Dichloro―and 3,4â€Difluoroaniline byPseudomonas fluorescens26â€K. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2003, 38, 121-132.	1.5	49
76	Laboratory-evolved Vanillyl-alcohol Oxidase Produces Natural Vanillin. Journal of Biological Chemistry, 2004, 279, 33492-33500.	3.4	49
77	The temperature and pH dependence of some properties of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. FEBS Journal, 1989, 179, 307-314.	0.2	48
78	A crystallographic study of Cys69Ala flavodoxin II fromAzotobacter vinelandii: Structural determinants of redox potential. Protein Science, 2005, 14, 2284-2295.	7.6	48
79	Effects of germination on the activities of amylases and phenolic enzymes in sorghum varieties grouped according to food end-use properties. Journal of the Science of Food and Agriculture, 2006, 86, 953-963.	3.5	48
80	Molecular Cloning, Sequencing, and Heterologous Expression of the vaoA Gene from Penicillium simplicissimum CBS 170.90 Encoding Vanillyl-Alcohol Oxidase. Journal of Biological Chemistry, 1998, 273, 7865-7872.	3.4	47
81	Seven new mutations in the nicotinamide adenine dinucleotide reduced–cytochrome b5 reductase gene leading to methemoglobinemia type I. Blood, 2001, 97, 1106-1114.	1.4	47
82	19 F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 22-34.	3.0	47
83	19 F Nuclear Magnetic Resonance as a Tool To Investigate Microbial Degradation of Fluorophenols to Fluorocatechols and Fluoromuconates. Applied and Environmental Microbiology, 1998, 64, 1256-1263.	3.1	46
84	The elucidation of the microheterogeneity of highly purified p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens by various biochemical techniques. FEBS Journal, 1987, 167, 35-46.	0.2	44
85	13C-NMR. Study on Isoalloxazine and Alloxazine Derivatives. Helvetica Chimica Acta, 1977, 60, 367-379.	1.6	43
86	Catalytic Mechanism of 2-Hydroxybiphenyl 3-Monooxygenase, a Flavoprotein from Pseudomonas azelaica HBP1. Journal of Biological Chemistry, 1999, 274, 33355-33365.	3.4	43
87	A Study on p-Hydroxybenzoate Hydroxylase from Pseudomonas fluorescens. FEBS Journal, 2005, 128, 21-27.	0.2	43
88	Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends in Biotechnology, 2020, 38, 917-934.	9.3	43
89	Crystal Structure of 3-Hydroxybenzoate 6-Hydroxylase Uncovers Lipid-assisted Flavoprotein Strategy for Regioselective Aromatic Hydroxylation. Journal of Biological Chemistry, 2013, 288, 26235-26245.	3.4	42
90	Influence of Lytic Polysaccharide Monooxygenase Active Site Segments on Activity and Affinity. International Journal of Molecular Sciences, 2019, 20, 6219.	4.1	41

#	Article	IF	CITATIONS
91	Regio- and Stereospecific Conversion of 4-Alkylphenols by the Covalent Flavoprotein Vanillyl-Alcohol Oxidase. Journal of Bacteriology, 1998, 180, 5646-5651.	2.2	41
92	The VAO/PCMH flavoprotein family. Archives of Biochemistry and Biophysics, 2017, 632, 104-117.	3.0	40
93	Enzymatic Baeyer-Villiger Oxidation of Benzaldehydes. Advanced Synthesis and Catalysis, 2005, 347, 1027-1034.	4.3	39
94	Antitumor astins originate from the fungal endophyte <i>Cyanodermella asteris</i> living within the medicinal plant <i>Aster tataricus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26909-26917.	7.1	39
95	4-Hydroxybenzoate Hydroxylase from Pseudomonas Sp. CBS3. Purification, Characterization, Gene Cloning, Sequence Analysis and Assignment of Structural Features Determining the Coenzyme Specificity. FEBS Journal, 1996, 239, 469-478.	0.2	38
96	Directing the Oligomer Size Distribution of Peroxidase-Mediated Cross-Linked Bovine α-Lactalbumin. Journal of Agricultural and Food Chemistry, 2010, 58, 5692-5697.	5.2	38
97	Studies on the active site of rat glutathione S-transferase isoenzyme 4-4. Chemical modification by tetrachloro-1,4-benzoquinone and its glutathione conjugate. FEBS Journal, 1989, 181, 423-429.	0.2	37
98	Asp-170 Is Crucial for the Redox Properties of Vanillyl-alcohol Oxidase. Journal of Biological Chemistry, 2000, 275, 14799-14808.	3.4	37
99	Horseradish Peroxidase-catalyzed Oligomerization of Ferulic Acid on a Template of a Tyrosine-containing Tripeptide. Journal of Biological Chemistry, 2002, 277, 21332-21340.	3.4	36
100	A His-tag based immobilization method for the preparation and reconstitution of apoflavoproteins. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 139-143.	2.4	36
101	Functional annotation and characterization of 3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 433-442.	2.3	36
102	Inhibition of Enzymatic Browning of Chlorogenic Acid by Sulfur-Containing Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 3507-3514.	5.2	36
103	Alternative coenzymes for biocatalysis. Current Opinion in Biotechnology, 2019, 60, 63-71.	6.6	36
104	Purification and characteriation of 3-hydroxyphenylacetate 6-hydroxylase: a novel FAD-dependent monooxygenase from a Flavobacterium species. FEBS Journal, 1991, 201, 585-592.	0.2	34
105	Enantioselective hydroxylation of 4-alkylphenols by vanillyl alcohol oxidase. , 1998, 59, 171-177.		34
106	Perspectives for on-site monitoring of progesterone. Trends in Biotechnology, 2009, 27, 652-660.	9.3	34
107	Flavin-dependent N-hydroxylating enzymes: distribution and application. Applied Microbiology and Biotechnology, 2020, 104, 6481-6499.	3.6	34
108	Biochemical characterization of the major sorghum grain peroxidase. FEBS Journal, 2006, 273, 2293-2307.	4.7	33

#	Article	IF	CITATIONS
109	Distant residues mediate picomolar binding affinity of a protein cofactor. Nature Communications, 2012, 3, 1010.	12.8	33
110	Large-scale preparation and reconstitution of apo-flavoproteins with special reference to butyryl-CoA dehydrogenase from Megasphaera elsdenii. Hydrophobic-interaction chromatography. FEBS Journal, 1988, 178, 197-207.	0.2	32
111	Molecular relaxation spectroscopy of flavin adenine dinucleotide in wild type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. Biochemistry, 1992, 31, 7061-7068.	2.5	32
112	Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding. AMB Express, 2015, 5, 112.	3.0	32
113	Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T. PLoS ONE, 2013, 8, e66971.	2.5	32
114	Kinetic mechanism of vanillyl-alcohol oxidase with short-chain 4-alkylphenols. FEBS Journal, 1998, 253, 712-719.	0.2	31
115	Cofactor-dependent Assembly of the Flavoenzyme Vanillyl-alcohol Oxidase. Journal of Biological Chemistry, 2002, 277, 36425-36432.	3.4	31
116	Coenzyme Binding during Catalysis Is Beneficial for the Stability of 4-Hydroxyacetophenone Monooxygenase. Journal of Biological Chemistry, 2005, 280, 32115-32121.	3.4	31
117	Genome Sequences of Alicycliphilus denitrificans Strains BC and K601 ^T . Journal of Bacteriology, 2011, 193, 5028-5029.	2.2	31
118	Oxygen Activation of Apoâ€obelin–Coelenterazine Complex. ChemBioChem, 2013, 14, 739-745.	2.6	31
119	Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiology Letters, 2002, 209, 307-312.	1.8	30
120	Bioluminescent and spectroscopic properties of His—Trp—Tyr triad mutants of obelin and aequorin. Photochemical and Photobiological Sciences, 2013, 12, 1016-1024.	2.9	30
121	The Reaction Kinetics of 3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Provide an Understanding of the para-Hydroxylation Enzyme Catalytic Cycle. Journal of Biological Chemistry, 2013, 288, 35210-35221.	3.4	30
122	On the FAD-induced dimerization of apo-lipoamide dehydrogenase from Azotobacter vinelandii and Pseudomonas fluorescens. Kinetics of reconstitution. FEBS Journal, 1991, 197, 769-779.	0.2	29
123	Lipomide dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Kinetics of wild-type and mutated enzymes. FEBS Journal, 1992, 207, 487-497.	0.2	29
124	Vanillyl-alcohol oxidase, a tasteful biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 185-188.	1.8	29
125	Identification of the Peroxidase-Generated Intermolecular Dityrosine Cross-Link in Bovine α-Lactalbumin. Journal of Agricultural and Food Chemistry, 2011, 59, 444-449.	5.2	29
126	Functional characterization and stability improvement of a â€~thermophilic-like' ene-reductase from Rhodococcus opacus 1CP. Frontiers in Microbiology, 2015, 6, 1073.	3.5	29

#	Article	IF	CITATIONS
127	The intrinsic fluorescence of apoâ€obelin and apoâ€aequorin and use of its quenching to characterize coelenterazine binding. FEBS Letters, 2009, 583, 1939-1944.	2.8	28
128	Picosecond Fluorescence Relaxation Spectroscopy of the Calcium-Discharged Photoproteins Aequorin and Obelin. Biochemistry, 2009, 48, 10486-10491.	2.5	28
129	On the origin of vanillyl alcohol oxidases. Fungal Genetics and Biology, 2018, 116, 24-32.	2.1	28
130	Properties of the complexes of riboflavin 3',5'-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. FEBS Journal, 1986, 161, 749-756.	0.2	27
131	19F NMR Study on the Regiospecificity of Hydroxylation of Tetrafluoro-4-hydroxybenzoate by Wild-Type and Y385Fp-Hydroxybenzoate Hydroxylase:Â Evidence for a Consecutive Oxygenolytic Dehalogenation Mechanismâ€. Biochemistry, 1997, 36, 14192-14201.	2.5	27
132	Lys42 and Ser42 variants of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens reveal that Arg42 is essential for NADPH binding. FEBS Journal, 1998, 253, 194-201.	0.2	27
133	Biocatalytic Potential ofp-Hydroxybenzoate Hydroxylase fromRhodococcus rhodnii 135 andRhodococcus opacus 557. Advanced Synthesis and Catalysis, 2004, 346, 367-375.	4.3	27
134	The antibrowning agent sulfite inactivates <i>AgaricusÂbisporus</i> tyrosinase through covalent modification of the copperâ€B site. FEBS Journal, 2013, 280, 6184-6195.	4.7	27
135	Potato and Mushroom Polyphenol Oxidase Activities Are Differently Modulated by Natural Plant Extracts. Journal of Agricultural and Food Chemistry, 2014, 62, 214-221.	5.2	27
136	NMR studies on p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida. FEBS Journal, 1991, 200, 731-738.	0.2	26
137	Determination of the permeability and porosity of anaerobic sludge granules by size exclusion chromatography. Applied Microbiology and Biotechnology, 1992, 36, 795-799.	3.6	26
138	Role of key residues of obelin in coelenterazine binding and conversion into 2-hydroperoxy adduct. Journal of Photochemistry and Photobiology B: Biology, 2013, 127, 133-139.	3.8	26
139	Complete Enzymatic Oxidation of Methanol to Carbon Dioxide: Towards More Ecoâ€Efficient Regeneration Systems for Reduced Nicotinamide Cofactors. Advanced Synthesis and Catalysis, 2015, 357, 1687-1691.	4.3	26
140	Chemical modification of sulfhydryl groups in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Involvement in catalysis and assignment in the sequence. FEBS Journal, 1984, 145, 245-256.	0.2	25
141	Site-directed mutagenesis of selected residues at the active site of aryl-alcohol oxidase, an H2O2-producing ligninolytic enzyme. FEBS Journal, 2006, 273, 4878-4888.	4.7	25
142	Activation of EpRE-mediated gene transcription by quercetin glucuronides depends on their deconjugation. Food and Chemical Toxicology, 2008, 46, 2128-2134.	3.6	25
143	Elucidation of In Situ Ligninolysis Mechanisms of the Selective White-Rot Fungus <i>Ceriporiopsis subvermispora</i> . ACS Sustainable Chemistry and Engineering, 2019, 7, 16757-16764.	6.7	25
144	Evidence for ligninolytic activity of the ascomycete fungus Podospora anserina. Biotechnology for Biofuels, 2020, 13, 75.	6.2	25

#	Article	IF	CITATIONS
145	19F-NMR study on the pH-dependent regioselectivity and rate of the ortho-hydroxylation of 3-fluorophenol by phenol hydroxylase from Trichosporon cutaneum. Implications for the reaction mechanism. FEBS Journal, 1993, 218, 345-353.	0.2	24
146	Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microbial Cell Factories, 2012, 11, 165.	4.0	24
147	Uniformly ¹³ C Labeled Lignin Internal Standards for Quantitative Pyrolysisâ^'GCâ^'MS Analysis of Grass and Wood. ACS Sustainable Chemistry and Engineering, 2019, 7, 20070-20076.	6.7	24
148	Molecular Cloning and Sequence Determination of the lpd Gene Encoding Lipoamide Dehydrogenase from Pseudomonas fluorescens. Microbiology (United Kingdom), 1989, 135, 1787-1797.	1.8	24
149	Lipoamide Dehydrogenase from Azotobacter vinelandii: site-directed mutagenesis of the His450-Glu455 diad. Spectral properties of wild type and mutated enzymes. FEBS Journal, 1991, 202, 863-872.	0.2	23
150	Mercuration of vanillyl-alcohol oxidase from Penicillium simplicissimum generates inactive dimers. FEBS Letters, 1997, 402, 33-35.	2.8	23
151	Purification and properties of p-hydroxybenzoate hydroxylases from Rhodococcus strains. Biochemistry (Moscow), 2001, 66, 898-903.	1.5	23
152	Flavoenzymeâ€mediated Regioselective Aromatic Hydroxylation with Coenzyme Biomimetics. ChemCatChem, 2020, 12, 1368-1375.	3.7	23
153	Catabolism of 4-hydroxybenzoate in proceeds through initial oxidative decarboxylation by a FAD-dependent 4-hydroxybenzoate 1-hydroxylase. FEMS Microbiology Letters, 1994, 121, 207-215.	1.8	23
154	The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Computational Biology, 2017, 13, e1005787.	3.2	23
155	The importance of monopole-monopole and monopole-dipole interactions on the binding of NADPH and NADPH analogues to p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Effects of pH and ionic strength. FEBS Journal, 1984, 139, 637-644.	0.2	22
156	Identification of Fluoropyrogallols as New Intermediates in Biotransformation of Monofluorophenols in Rhodococcus opacus 1cp. Applied and Environmental Microbiology, 2000, 66, 2148-2153.	3.1	22
157	Human NAD(P)H:Quinone oxidoreductase inhibition by flavonoids in living cells. Free Radical Biology and Medicine, 2005, 39, 257-265.	2.9	22
158	Configuration of active site segments in lytic polysaccharide monooxygenases steers oxidative xyloglucan degradation. Biotechnology for Biofuels, 2020, 13, 95.	6.2	22
159	Chemical modification of tyrosine-38 in P-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens by 5'-P-fluorosulfonylbenzoyladenosine: A probe for the elucidation of the NADPH binding site?. Involvement in cataysis, assignment in sequence and fitting to the tertiary structure. FEBS lournal. 1988. 176. 449-459.	0.2	21
160	Real-time Enzyme Dynamics Illustrated with Fluorescence Spectroscopy of p-Hydroxybenzoate Hydroxylase. Journal of Biological Chemistry, 2006, 281, 11074-11081.	3.4	21
161	Engineering of microheterogeneity-resistantp-hydroxybenzoate hydroxylase fromPseudomonas fluorescens. FEBS Letters, 1990, 277, 197-199.	2.8	20
162	Crystallization and preliminary x-ray analysis of the flavoenzyme vanillyl-alcohol oxidase from Penicillium Simplicissimum. , 1997, 27, 601-603.		20

#	Article	IF	CITATIONS
163	Phe161and Arg166variants ofp-hydroxybenzoate hydroxylase. FEBS Letters, 1999, 443, 251-255.	2.8	20
164	Functional assignment of Glu386 and Arg388 in the active site of <scp>l</scp> â€galactonoâ€Î³â€lactone dehydrogenase. FEBS Letters, 2009, 583, 3199-3203.	2.8	20
165	FAD C(4a)â€hydroxide stabilized in a naturally fused styrene monooxygenase. FEBS Letters, 2013, 587, 3848-3852.	2.8	20
166	The Oxidation of Thiols by Flavoprotein Oxidases: a Biocatalytic Route to Reactive Thiocarbonyls. Angewandte Chemie - International Edition, 2014, 53, 13206-13209.	13.8	20
167	Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus <i>Ceriporiopsis subvermispora</i> . ACS Sustainable Chemistry and Engineering, 2019, 7, 20032-20042.	6.7	20
168	Structure and Function of Mutant Arg44Lys of 4-Hydroxybenzoate Hydroxylase. Implications for NADPH Binding. FEBS Journal, 1995, 231, 157-165.	0.2	19
169	Communication between <scp>L</scp> –galactono–1,4–lactone dehydrogenase and cytochrome <i>c</i> . FEBS Journal, 2013, 280, 1830-1840.	4.7	19
170	Lipoamide dehydrogenase from Azotobacter vinelandii. The role of the C-terminus in catalysis and dimer stabilization. FEBS Journal, 1992, 207, 499-505.	0.2	18
171	[13] Flavodoxins. Methods in Enzymology, 1994, 243, 188-203.	1.0	18
172	Direction of the reactivity of vanillyl-alcohol oxidase with 4-alkylphenols. FEBS Letters, 2000, 481, 109-112.	2.8	18
173	Reduction Kinetics of 3-Hydroxybenzoate 6-Hydroxylase from <i>Rhodococcus jostii</i> RHA1. Biochemistry, 2012, 51, 4309-4321.	2.5	18
174	Structure and function of Aspergillus niger laccase McoG. Biocatalysis, 2017, 3, 1-21.	2.3	18
175	Natural diversity of FAD-dependent 4-hydroxybenzoate hydroxylases. Archives of Biochemistry and Biophysics, 2021, 702, 108820.	3.0	18
176	Chemical modification of tyrosine residues in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens: assignment in sequence and catalytic involvement. Biochemistry, 1986, 25, 4211-4218.	2.5	17
177	Draft genome sequence of Talaromyces islandicus ("Penicillium islandicumâ€) WF-38-12, a neglected mold with significant biotechnological potential. Journal of Biotechnology, 2015, 211, 101-102.	3.8	17
178	Characterization of a bacterial pyranose 2-oxidase from Arthrobacter siccitolerans. Journal of Molecular Catalysis B: Enzymatic, 2016, 133, S34-S43.	1.8	17
179	Pyridine Nucleotide Coenzyme Specificity of p-Hydroxybenzoate Hydroxylase and Related Flavoprotein Monooxygenases. Frontiers in Microbiology, 2018, 9, 3050.	3.5	17
180	Vanillyl alcohol oxidase. The Enzymes, 2020, 47, 87-116.	1.7	17

#	Article	IF	CITATIONS
181	19 F NMR study on the biological Baeyer-Villiger oxidation of acetophenones. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 35-42.	3.0	16
182	Zymography of Monophenolase and o-Diphenolase Activities of Polyphenol Oxidase. Analytical Biochemistry, 2002, 306, 336-339.	2.4	16
183	RP-UHPLC-UV-ESI-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminobenzamide. Carbohydrate Research, 2017, 448, 191-199.	2.3	16
184	<i>Cyanodermella asteris</i> sp. nov. (<i>Ostropales</i>) from the inflorescence axis of <i> Aster tataricus</i> . Mycotaxon, 2017, 132, 107-123.	0.3	16
185	FRET Reveals the Formation and Exchange Dynamics of Protein-Containing Complex Coacervate Core Micelles. Langmuir, 2018, 34, 12083-12092.	3.5	16
186	Mass spectrometric fragmentation patterns discriminate C1- and C4-oxidised cello-oligosaccharides from their non-oxidised and reduced forms. Carbohydrate Polymers, 2020, 234, 115917.	10.2	16
187	Oxizymes for Biotechnology. Current Biotechnology, 2015, 4, 100-110.	0.4	16
188	Rapid relaxation processes in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens revealed by subnanosecond-resolved laser-induced fluorescence. FEBS Journal, 1984, 143, 189-197.	0.2	15
189	The cyclochlorotine mycotoxin is produced by the nonribosomal peptide synthetase CctN in <i>Talaromyces islandicus</i> (â€~ <i>Penicillium islandicum</i> '). Environmental Microbiology, 2016, 18, 3728-3741.	3.8	15
190	On the Enigma of Old Yellow Enzyme's Spectral Properties. FEBS Journal, 1982, 129, 303-316.	0.2	14
191	Subcellular localization of vanillyl-alcohol oxidase inPenicillium simplicissimum. FEBS Letters, 1998, 422, 65-68.	2.8	14
192	In-line quantification of peroxidase-catalyzed cross-linking of α-lactalbumin in a microreactor. Chemical Engineering Journal, 2010, 157, 189-193.	12.7	14
193	Galactonolactone oxidoreductase from Trypanosoma cruzi employs a FAD cofactor for the synthesis of vitamin C. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 545-552.	2.3	14
194	Encapsulation into complex coacervate core micelles promotes EGFP dimerization. Physical Chemistry Chemical Physics, 2017, 19, 11380-11389.	2.8	14
195	Two tyrosine residues, Tyr-108 and Tyr-503, are responsible for the deprotonation of phenolic substrates in vanillyl-alcohol oxidase. Journal of Biological Chemistry, 2017, 292, 14668-14679.	3.4	14
196	The conformational stability of the redox states of lipoamide dehydrogenase from Azotobacter vinelandii. FEBS Journal, 1991, 202, 1049-1055.	0.2	13
197	Changes in secondary structure and flavin microenvironment between Azotobacter vinelandii lipoamide dehydrogenase and several deletion mutants from circular dichroism. Biochimica Et Biophysica Acta - Bioenergetics, 1995, 1229, 381-385.	1.0	13
198	A single loop is essential for the octamerization of vanillyl alcohol oxidase. FEBS Journal, 2016, 283, 2546-2559.	4.7	13

#	Article	IF	CITATIONS
199	Proline dehydrogenase from Thermus thermophilus does not discriminate between FAD and FMN as cofactor. Scientific Reports, 2017, 7, 43880.	3.3	13
200	Redox Properties of Vanillyl-Alcohol Oxidase. Methods in Enzymology, 2002, 353, 177-186.	1.0	12
201	Conversion of 2-Fluoromuconate to cis -Dienelactone by Purified Enzymes of Rhodococcus opacus 1cp. Applied and Environmental Microbiology, 2003, 69, 5636-5642.	3.1	12
202	Reversible resolution of flavin and pterin cofactors of His-tagged Escherichia coli DNA photolyase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1454-1461.	2.3	12
203	Improvement of lipoxygenase inhibition by octapeptides. Peptides, 2007, 28, 2268-2275.	2.4	12
204	Tyr217 and His213 are important for substrate binding and hydroxylation of 3â€hydroxybenzoate 6â€hydroxylase from <i>Rhodococcus jostii </i> <scp>RHA</scp> 1. FEBS Journal, 2016, 283, 860-881.	4.7	12
205	Flavin Motion in p-Hydroxybenzoate Hydroxylase. Substrate and Effector Specificity of the Tyr222Ala Mutant. FEBS Journal, 1996, 237, 592-600.	0.2	11
206	Colorful Packages: Encapsulation of Fluorescent Proteins in Complex Coacervate Core Micelles. International Journal of Molecular Sciences, 2017, 18, 1557.	4.1	11
207	3-Hydroxybenzoate 6-Hydroxylase from Rhodococcus jostii RHA1 Contains a Phosphatidylinositol Cofactor. Frontiers in Microbiology, 2017, 8, 1110.	3.5	11
208	A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases. Molecules, 2018, 23, 164.	3.8	11
209	Tuning of pK values activates substrates in flavin-dependent aromatic hydroxylases. Journal of Biological Chemistry, 2020, 295, 3965-3981.	3.4	11
210	Oxidized Product Profiles of AA9 Lytic Polysaccharide Monooxygenases Depend on the Type of Cellulose. ACS Sustainable Chemistry and Engineering, 2021, 9, 14124-14133.	6.7	11
211	Regioselective C4 and C6 Double Oxidation of Cellulose by Lytic Polysaccharide Monooxygenases. ChemSusChem, 2022, 15, .	6.8	11
212	Selective cysteine ↕serine replacements in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens allow the unambiguous assignment of Cys211 as the site of modification by spin-labeled p-chloromercuribenzoate. Protein Engineering, Design and Selection, 1994, 7, 801-804.	2.1	10
213	High yields of active <i>Thermus thermophilus</i> proline dehydrogenase are obtained using maltoseâ€binding protein as a solubility tag. Biotechnology Journal, 2015, 10, 395-403.	3.5	10
214	Lipoamide dehydrogenase. , 1996, , 53-70.		10
215	Flavoprotein Kinetics. , 1999, 131, 61-86.		9
216	Tuning of the product spectrum of vanillyl-alcohol oxidase by medium engineering. FEBS Letters, 2001, 503, 213-216.	2.8	9

#	Article	IF	CITATIONS
217	Monomer Formation and Function of <i>p</i> â€Hydroxybenzoate Hydroxylase in Reverse Micelles and in Dimethylsulfoxide/Water Mixtures. ChemBioChem, 2008, 9, 413-419.	2.6	9
218	Communication. Vanillyl alcohol oxidases produced in Komagataella phaffii contain a highly stable noncovalently bound anionic FAD semiquinone. Biocatalysis, 2017, 3, .	2.3	9
219	Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca ²⁺ â€regulated Photoproteins of Different Organisms. Photochemistry and Photobiology, 2017, 93, 495-502.	2.5	9
220	Multigram Scale Enzymatic Synthesis of (<i>R</i>)″â€(4′â€Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase. Advanced Synthesis and Catalysis, 2018, 360, 2370-2376.	4.3	9
221	Catalytic Performance of a Class III Old Yellow Enzyme and Its Cysteine Variants. Frontiers in Microbiology, 2018, 9, 2410.	3.5	9
222	Editorial: Actinobacteria, a Source of Biocatalytic Tools. Frontiers in Microbiology, 2019, 10, 800.	3.5	9
223	Cofactor Binding Protects Flavodoxin against Oxidative Stress. PLoS ONE, 2012, 7, e41363.	2.5	9
224	Structure, function and redesign of vanillyl-alcohol oxidase. International Congress Series, 2002, 1233, 13-24.	0.2	8
225	Shifted concentration dependency of EpRE- and XRE-mediated gene expression points at monofunctional EpRE-mediated induction by flavonoids at physiologically relevant concentrations. Toxicology in Vitro, 2008, 22, 921-926.	2.4	8
226	N -terminus determines activity and specificity of styrene monooxygenase reductases. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1770-1780.	2.3	8
227	Astin C Production by the Endophytic Fungus <i>Cyanodermella asteris</i> in Planktonic and Immobilized Culture Conditions. Biotechnology Journal, 2019, 14, e1800624.	3.5	7
228	Covalent flavinylation enhances the oxidative power of vanillyl-alcohol oxidase. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 43-46.	1.8	6
229	Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus. Molecules, 2018, 23, 184.	3.8	6
230	Reconstitution of apoglucose oxidase with FAD conjugates for biosensoring of progesterone. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2007, 1774, 803-812.	2.3	5
231	A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: application to glucose oxidase. Analytical and Bioanalytical Chemistry, 2007, 389, 2029-2033.	3.7	5
232	Bifunctional immobilization of a hyperthermostable endo-β-1,3-glucanase. Applied Microbiology and Biotechnology, 2014, 98, 1155-1163.	3.6	5
233	The Ribosome Restrains Molten Globule Formation in Stalled Nascent Flavodoxin. Journal of Biological Chemistry, 2016, 291, 25911-25920.	3.4	5
234	A more polar N-terminal helix releases MBP-tagged Thermus thermophilus proline dehydrogenase from tetramer-polymer self-association. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 340-346.	1.8	5

#	Article	IF	CITATIONS
235	Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. Journal of Biological Chemistry, 2020, 295, 16013-16022.	3.4	5
236	Flavin-Dependent Monooxygenases with Special Reference to p-Hydroxybenzoate Hydroxylase. , 2018, , 1-30.		5
237	19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 22-34.	3.0	5
238	C-13, N-15, and two-dimensional NMR techniques in flavoprotein research. , 1987, , 261-270.		4
239	Identification of Lipoxygenase Inhibitory Peptides from β-Casein by Using SPOT Synthesis. ChemBioChem, 2006, 7, 743-747.	2.6	4
240	Time-resolved fluorescence analysis of the mobile flavin cofactor in p-hydroxybenzoate hydroxylase. Journal of Chemical Sciences, 2007, 119, 123-133.	1.5	4
241	Ligand binding and conformational states of the photoprotein obelin. FEBS Letters, 2012, 586, 4173-4179.	2.8	4
242	3 The flavin monooxygenases. , 2013, , 51-72.		4
243	Stalled flavodoxin binds its cofactor while fully exposed outside the ribosome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1317-1324.	2.3	4
244	Dimerization of Proline Dehydrogenase from Thermus thermophilus Is Crucial for Its Thermostability. Biotechnology Journal, 2019, 14, 1800540.	3.5	4
245	The Endophytic Fungus Cyanodermella asteris Influences Growth of the Non-Natural Host Plant Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2021, , .	2.6	4
246	19F NMR study on the biological Baeyer-Villiger oxidation of acetophenones. Journal of Industrial Microbiology and Biotechnology, 2001, 26, 35-42.	3.0	4
247	NMR characterization of a 264-residue hyperthermostable endo-β-1,3-glucanase. Biochemical and Biophysical Research Communications, 2010, 391, 370-375.	2.1	3
248	Transientâ€ s tate kinetic analysis of complex formation between photoprotein clytin and <scp>GFP</scp> from jellyfish <i>Clytia gregaria</i> . FEBS Letters, 2016, 590, 307-316.	2.8	3
249	Chaotropic heat treatment resolves nativeâ€like aggregation of a heterologously produced hyperthermostable laminarinase. Biotechnology Journal, 2017, 12, 1700007.	3.5	3
250	Aldonolactone Oxidoreductases. Methods in Molecular Biology, 2014, 1146, 95-111.	0.9	2
251	Extending the diversity of Myceliophthora thermophila LPMOs: Two different xyloglucan cleavage profiles. Carbohydrate Polymers, 2022, 288, 119373.	10.2	2
252	Chemical modification of tyrosine-38 in j>hydroxybenzoate hydroxylase from Pseudomonas fluorescens by 5'-Pfluorosulfonylbenzoyladenosine: A probe for the elucidation of the NADPH binding site?. , 1987, , 549-552.		1

#	Article	IF	CITATIONS
253	Increasing the operational stability of flavoproteins by covalent cofactor binding. Progress in Biotechnology, 1998, , 141-146.	0.2	1
254	Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. FEBS Journal, 2000, 267, 6832-6840.	0.2	1
255	Preferential oxidative dehalogenation upon conversion of 2-halophenols by Rhodococcus opacus 1G. FEMS Microbiology Letters, 1999, 181, 73-82.	1.8	1
256	Generation of Taste through (Redox) Biocatalysis. , 2005, , 137-152.		0
257	Identification of Lipoxygenase Inhibitory Peptides from β-Casein by Using SPOT Synthesis. ChemBioChem, 2006, 7, 865-865.	2.6	0
258	Special issue OxiZymes 2016. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 273.	1.8	0