Thomas Vogt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/552943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenylpropanoid Biosynthesis. Molecular Plant, 2010, 3, 2-20.	8.3	2,042
2	Recent advances in betalain research. Phytochemistry, 2003, 62, 247-269.	2.9	657
3	Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends in Plant Science, 2000, 5, 380-386.	8.8	546
4	Cloning and expression of a cDNA encoding betanidin 5-O-glucosyltransferase, a betanidin- and flavonoid-specific enzyme with high homology to inducible glucosyltransferases from the Solanaceae. Plant Journal, 1999, 19, 509-519.	5.7	131
5	A Novel Mg2+-dependent O-Methyltransferase in the Phenylpropanoid Metabolism of Mesembryanthemum crystallinum. Journal of Biological Chemistry, 2003, 278, 43961-43972.	3.4	109
6	Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry, 1999, 52, 583-592.	2.9	107
7	Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases?. Planta, 1997, 203, 349-361.	3.2	83
8	Substrate specificity and sequence analysis define a polyphyletic origin of betanidin 5- and 6-O-glucosyltransferase from Dorotheanthus bellidiformis. Planta, 2002, 214, 492-495.	3.2	75
9	Phenylpropanoid polyamine conjugate biosynthesis in Arabidopsis thaliana flower buds. Phytochemistry, 2009, 70, 1392-1400.	2.9	67
10	Cloning and functional characterisation of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry, 2006, 67, 1598-1612.	2.9	65
11	Site-directed mutagenesis and protein 3D-homology modelling suggest a catalytic mechanism for UDP-glucose-dependent betanidin 5-O-glucosyltransferase fromDorotheanthus bellidiformis. Plant Journal, 2004, 39, 319-333.	5.7	59
12	Biochemical and Structural Analysis of Substrate Promiscuity in Plant Mg2+-Dependent O-Methyltransferases. Journal of Molecular Biology, 2008, 378, 154-164.	4.2	59
13	Tapetumâ€specific location of a cationâ€dependent <i>O</i> â€methyltransferase in <i>Arabidopsis thaliana</i> . Plant Journal, 2008, 56, 132-145.	5.7	58
14	Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen. Trends in Plant Science, 2015, 20, 212-218.	8.8	50
15	Osmotic stress is accompanied by protein glycation in <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6283-6295.	4.8	47
16	Profiling of hydroxycinnamic acid amides in Arabidopsis thaliana pollen by tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2010, 398, 2789-2801.	3.7	43
17	Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803. Journal of Biological Chemistry, 2008, 283, 20888-20896.	3.4	38
18	Concentration of Dilute Protein Solutions Prior to Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis. Analytical Biochemistry, 1997, 250, 257-260.	2.4	34

THOMAS VOGT

#	Article	IF	CITATIONS
19	A single amino acid determines position specificity of an <i>Arabidopsis thaliana</i> CCoAOMTâ€like <i>O</i> â€methyltransferase. FEBS Letters, 2013, 587, 683-689.	2.8	34
20	Regiospecificity and kinetic properties of a plant natural product O -methyltransferase are determined by its N-terminal domain. FEBS Letters, 2004, 561, 159-162.	2.8	33
21	The role of CCoAOMT1 and COMT1 in Arabidopsis anthers. Planta, 2012, 236, 51-61.	3.2	30
22	Engineering Betalain Biosynthesis in Tomato for High Level Betanin Production in Fruits. Frontiers in Plant Science, 2021, 12, 682443.	3.6	30
23	The Tapetal Major Facilitator NPF2.8 Is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thaliana. Plant Cell, 2020, 32, 1727-1748.	6.6	28
24	Polyamine Homeostasis in Wild Type and Phenolamide Deficient Arabidopsis thaliana Stamens. Frontiers in Plant Science, 2012, 3, 180.	3.6	27
25	Glycosylated Natural Products. , 2005, , 685-711.		25
26	Cations modulate the substrate specificity of bifunctional class I O -methyltransferase from Ammi majus. FEBS Letters, 2004, 577, 367-370.	2.8	24
27	Identification and characterization of piperine synthase from black pepper, Piper nigrum L Communications Biology, 2021, 4, 445.	4.4	19
28	Unusual spermine-conjugated hydroxycinnamic acids on pollen: function and evolutionary advantage. Journal of Experimental Botany, 2018, 69, 5311-5315.	4.8	17
29	A piperic acid CoA ligase produces a putative precursor of piperine, the pungent principle from black pepper fruits. Plant Journal, 2020, 102, 569-581.	5.7	16
30	Piper nigrum CYP719A37 Catalyzes the Decisive Methylenedioxy Bridge Formation in Piperine Biosynthesis. Plants, 2021, 10, 128.	3.5	15
31	A catalytic triad $\hat{a} \in$ Lys-Asn-Asp $\hat{a} \in$ Is essential for the catalysis of the methyl transfer in plant cation-dependent O-methyltransferases. Phytochemistry, 2015, 113, 130-139.	2.9	14
32	Arabidopsis methyltransferase fingerprints by affinity-based protein profiling. Analytical Biochemistry, 2011, 408, 220-225.	2.4	13
33	The terminal enzymatic step in piperine biosynthesis is coâ€localized with the product piperine in specialized cells of black pepper (<i>Piper nigrum</i> L.). Plant Journal, 2022, 111, 731-747.	5.7	4
34	Corrigendum to "Cations modulate the substrate specificity of bifunctional class IO-methyltransferase fromAmmi majus―[FEBS Lett. 577 (2004) 367-370]. FEBS Letters, 2009, 583, 855-855.	2.8	0