George Perry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528737/publications.pdf Version: 2024-02-01

		355	872
905	77,897	136	243
papers	citations	h-index	g-index
1121	1121	1121	60025
all docs	docs citations	times ranked	citing authors

CEODOE DEDDV

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
2	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
3	Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 759-767.	0.9	1,670
4	Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proceedings of the United States of America, 1997, 94, 9866-9868.	3.3	1,259
5	Widespread Peroxynitrite-Mediated Damage in Alzheimer's Disease. Journal of Neuroscience, 1997, 17, 2653-2657.	1.7	1,216
6	Mitochondrial Abnormalities in Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 3017-3023.	1.7	1,179
7	Impaired Balance of Mitochondrial Fission and Fusion in Alzheimer's Disease. Journal of Neuroscience, 2009, 29, 9090-9103.	1.7	1,003
8	Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1240-1247.	1.8	982
9	Oxidative damage in Alzheimer's. Nature, 1996, 382, 120-121.	13.7	903
10	4â€Hydroxynonenalâ€Derived Advanced Lipid Peroxidation End Products Are Increased in Alzheimer's Disease. Journal of Neurochemistry, 1997, 68, 2092-2097.	2.1	892
11	Diabetes-Associated Sustained Activation of the Transcription Factor Nuclear Factor-ÂB. Diabetes, 2001, 50, 2792-2808.	0.3	782
12	Advanced Maillard reaction end products are associated with Alzheimer disease pathology Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 5710-5714.	3.3	745
13	RNA Oxidation Is a Prominent Feature of Vulnerable Neurons in Alzheimer's Disease. Journal of Neuroscience, 1999, 19, 1959-1964.	1.7	708
14	Oxidative Stress and Neurotoxicity. Chemical Research in Toxicology, 2008, 21, 172-188.	1.7	707
15	Oxidative stress in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2000, 1502, 139-144.	1.8	668
16	Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 2-10.	1.8	587
17	Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3033-3036.	3.3	586
18	Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7787-7791.	3.3	577

#	Article	IF	CITATIONS
19	Chemistry and Biochemistry of Oxidative Stress in Neurodegenerative Disease. Current Medicinal Chemistry, 2001, 8, 721-738.	1.2	573
20	Parkinson's Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons. American Journal of Pathology, 1999, 154, 1423-1429.	1.9	570
21	Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Molecular Neurodegeneration, 2020, 15, 30.	4.4	562
22	Metal Binding and Oxidation of Amyloid-β within Isolated Senile Plaque Cores: Raman Microscopic Evidenceâ€. Biochemistry, 2003, 42, 2768-2773.	1.2	543
23	Amyloidâ€Î² Deposition in Alzheimer Transgenic Mice Is Associated with Oxidative Stress. Journal of Neurochemistry, 1998, 70, 2212-2215.	2.1	499
24	In Situ Oxidative Catalysis by Neurofibrillary Tangles and Senile Plaques in Alzheimer's Disease. Journal of Neurochemistry, 2001, 74, 270-279.	2.1	485
25	Involvement of Oxidative Stress in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2006, 65, 631-641.	0.9	484
26	The Amyloid-β Pathway in Alzheimer's Disease. Molecular Psychiatry, 2021, 26, 5481-5503.	4.1	478
27	Radical AGEing in Alzheimer's disease. Trends in Neurosciences, 1995, 18, 172-176.	4.2	469
28	Oxidative stress in Alzheimer disease: A possibility for prevention. Neuropharmacology, 2010, 59, 290-294.	2.0	431
29	Microbes and Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 979-984.	1.2	426
30	Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 419-429.	2.1	422
31	Activation and redistribution of c-Jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. Journal of Neurochemistry, 2001, 76, 435-441.	2.1	419
32	Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid β-peptide. Nature Medicine, 1995, 1, 693-699.	15.2	416
33	Alzheimer's disease: the two-hit hypothesis. Lancet Neurology, The, 2004, 3, 219-226.	4.9	402
34	Alzheimer Disease and Oxidative Stress. Journal of Biomedicine and Biotechnology, 2002, 2, 120-123.	3.0	380
35	Oxidative stress signalling in Alzheimer's disease. Brain Research, 2004, 1000, 32-39.	1.1	377
36	Evidence that the β-Amyloid Plaques of Alzheimer's Disease Represent the Redox-silencing and Entombment of Aβ by Zinc. Journal of Biological Chemistry, 2000, 275, 19439-19442.	1.6	366

#	Article	IF	CITATIONS
37	Copper Mediates Dityrosine Cross-Linking of Alzheimer's Amyloid-β. Biochemistry, 2004, 43, 560-568.	1.2	362
38	Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 363-372.	1.2	357
39	Redox-active iron mediates amyloid-l ² toxicity. Free Radical Biology and Medicine, 2001, 30, 447-450.	1.3	356
40	LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Human Molecular Genetics, 2012, 21, 1931-1944.	1.4	356
41	Oxidative Stress Increases Expression and Activity of BACE in NT2 Neurons. Neurobiology of Disease, 2002, 10, 279-288.	2.1	355
42	The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer's Disease. NeuroSignals, 2002, 11, 270-281.	0.5	336
43	Activation of p38 Kinase Links Tau Phosphorylation, Oxidative Stress, and Cell Cycle-Related Events in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2000, 59, 880-888.	0.9	328
44	Role of mitochondrial dysfunction in Alzheimer's disease. Journal of Neuroscience Research, 2002, 70, 357-360.	1.3	324
45	Causes of oxidative stress in Alzheimer disease. Cellular and Molecular Life Sciences, 2007, 64, 2202-2210.	2.4	312
46	beta-Site APP cleaving enzyme up-regulation induced by 4-hydroxynonenal is mediated by stress-activated protein kinases pathways. Journal of Neurochemistry, 2005, 92, 628-636.	2.1	311
47	Neuronal Oxidative Stress Precedes Amyloid-Î ² Deposition in Down Syndrome. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1011-1017.	0.9	307
48	Microglial activation and amyloidâ€Ĵ² clearance induced by exogenous heatâ€shock proteins. FASEB Journal, 2002, 16, 601-603.	0.2	299
49	Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease. Brain Research, 1996, 737, 195-200.	1.1	295
50	Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. Journal of Neurochemistry, 2003, 85, 1101-1108.	2.1	295
51	Microtubule Reduction in Alzheimer's Disease and Aging Is Independent of Ï,, Filament Formation. American Journal of Pathology, 2003, 162, 1623-1627.	1.9	294
52	Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the â€~two hit' hypothesis. Mechanisms of Ageing and Development, 2001, 123, 39-46.	2.2	293
53	Oxidative stress activates a positive feedback between the γ―and βâ€secretase cleavages of the βâ€amyloid precursor protein. Journal of Neurochemistry, 2008, 104, 683-695.	2.1	287
54	Activation of neuronal extracellular receptor kinase (ERK) in Alzheimer disease links oxidative stress to abnormal phosphorylation. NeuroReport, 1999, 10, 2411-2415.	0.6	278

#	Article	IF	CITATIONS
55	Activation of NADPH Oxidase in Alzheimer's Disease Brains. Biochemical and Biophysical Research Communications, 2000, 273, 5-9.	1.0	275
56	Amyloid-β: a chameleon walking in two worlds: a review of the trophic and toxic properties of amyloid-β. Brain Research Reviews, 2003, 43, 1-16.	9.1	271
57	Role of metal dyshomeostasis in Alzheimer's disease. Metallomics, 2011, 3, 267.	1.0	267
58	Is oxidative damage the fundamental pathogenic mechanism of Alzheimer's and other neurodegenerative diseases?. Free Radical Biology and Medicine, 2002, 33, 1475-1479.	1.3	266
59	Ribosomal RNA in Alzheimer Disease Is Oxidized by Bound Redox-active Iron. Journal of Biological Chemistry, 2005, 280, 20978-20986.	1.6	261
60	Oxidative stress in blood in Alzheimer's disease and mild cognitive impairment: A meta-analysis. Neurobiology of Disease, 2013, 59, 100-110.	2.1	260
61	Systemic Increase of Oxidative Nucleic Acid Damage in Parkinson's Disease and Multiple System Atrophy. Neurobiology of Disease, 2002, 9, 244-248.	2.1	258
62	Alzheimer's disease – synergistic effects of glucose deficit, oxidative stress and advanced glycation endproducts. Journal of Neural Transmission, 1998, 105, 439.	1.4	256
63	Alzheimer disease, the two-hit hypothesis: An update. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 494-502.	1.8	251
64	Oxidative Stress Signaling in Alzheimers Disease. Current Alzheimer Research, 2008, 5, 525-532.	0.7	250
65	How important is oxidative damage? Lessons from Alzheimer's disease. Free Radical Biology and Medicine, 2000, 28, 831-834.	1.3	247
66	Progress toward standardized diagnosis of vascular cognitive impairment: Guidelines from the Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2018, 14, 280-292.	0.4	246
67	The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer's disease. Journal of Neurochemistry, 2009, 109, 153-159.	2.1	245
68	Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7552-7556.	3.3	244
69	Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain Research, 1998, 780, 260-269.	1.1	244
70	Oxidative Stress in Diabetes and Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 763-774.	1.2	244
71	Mitochondria: A therapeutic target in neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 212-220.	1.8	244
72	Cytochemical Demonstration of Oxidative Damage in Alzheimer Disease by Immunochemical Enhancement of the Carbonyl Reaction with 2,4-Dinitrophenylhydrazine. Journal of Histochemistry and Cytochemistry, 1998, 46, 731-735.	1.3	234

#	Article	lF	CITATIONS
73	Neuroinflammation, Hyperphosphorylated Tau, Diffuse Amyloid Plaques, and Down-Regulation of the Cellular Prion Protein in Air Pollution Exposed Children and Young Adults. Journal of Alzheimer's Disease, 2012, 28, 93-107.	1.2	234
74	Magnitude and Kinetics of CD8+ T Cell Activation during Hyperacute HIV Infection Impact Viral Set Point. Immunity, 2015, 43, 591-604.	6.6	234
75	Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 135-142.	1.8	229
76	Tau phosphorylation in Alzheimer's disease: pathogen or protector?. Trends in Molecular Medicine, 2005, 11, 164-169.	3.5	224
77	Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathologica, 2000, 100, 111-114.	3.9	223
78	Astrocytes Regulate Microglial Phagocytosis of Senile Plaque Cores of Alzheimer's Disease. Experimental Neurology, 1998, 149, 329-340.	2.0	221
79	The upâ€regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α. Journal of Neurochemistry, 2009, 108, 1045-1056.	2.1	217
80	Paired helical filaments from Alzheimer disease patients contain cytoskeletal components Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3916-3920.	3.3	216
81	Redox metals and neu rodegenerative disease. Current Opinion in Chemical Biology, 1999, 3, 220-225.	2.8	211
82	Carbonylâ€Related Posttranslational Modification of Neurofilament Protein in the Neurofibrillary Pathology of Alzheimer's Disease. Journal of Neurochemistry, 1995, 64, 2660-2666.	2.1	211
83	Phosphorylation of tau protein at sites <scp>Ser</scp> ^{396–404} is one of the earliest events in <scp>A</scp> lzheimer's disease and <scp>D</scp> own syndrome. Neuropathology and Applied Neurobiology, 2014, 40, 121-135.	1.8	207
84	Identification of Ubiquilin, a Novel Presenilin Interactor That Increases Presenilin Protein Accumulation. Journal of Cell Biology, 2000, 151, 847-862.	2.3	205
85	Variably proteaseâ€sensitive prionopathy: A new sporadic disease of the prion protein. Annals of Neurology, 2010, 68, 162-172.	2.8	203
86	Induction of Heme Oxygenaseâ€1 mRNA and Protein in Neocortex and Cerebral Vessels in Alzheimer's Disease. Journal of Neurochemistry, 1995, 65, 1399-1402.	2.1	199
87	Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4501-4505.	3.3	196
88	Insulin-resistant brain state: The culprit in sporadic Alzheimer's disease?. Ageing Research Reviews, 2011, 10, 264-273.	5.0	195
89	Active glycation in neurofibrillary pathology of Alzheimer disease: NÎμ-(Carboxymethyl) lysine and hexitol-lysine. Free Radical Biology and Medicine, 2001, 31, 175-180.	1.3	194
90	Amyloid-β and τ serve antioxidant functions in the aging and Alzheimer brain. Free Radical Biology and Medicine, 2002, 33, 1194-1199.	1.3	194

#	Article	IF	CITATIONS
91	Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology, 2019, 92, 329-337.	1.5	194
92	Cognitive impairment in multiple system atrophy: A position statement by the neuropsychology task force of the MDS multiple system atrophy (MODIMSA) study group. Movement Disorders, 2014, 29, 857-867.	2.2	193
93	Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics, 2019, 16, 666-674.	2.1	191
94	Copernicus revisited: amyloid beta in Alzheimer's disease. Neurobiology of Aging, 2001, 22, 131-146.	1.5	190
95	In Alzheimer's Disease, Heme Oxygenase Is Coincident with Alz50, an Epitope of Ï., Induced by 4-Hydroxy-2-Nonenal Modification. Journal of Neurochemistry, 2002, 75, 1234-1241.	2.1	189
96	Nucleic acid oxidation in Alzheimer disease. Free Radical Biology and Medicine, 2008, 44, 1493-1505.	1.3	188
97	Phosphorylation of Neurofilaments Is Altered in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 1988, 47, 642-653.	0.9	186
98	Degeneration of vascular muscle cells in cerebral amyloid angiopathy of Alzheimer disease. Brain Research, 1993, 623, 142-146.	1.1	186
99	Reactive Oxygen Species Mediate Cellular Damage in Alzheimer Disease. Journal of Alzheimer's Disease, 1998, 1, 45-55.	1.2	185
100	Oxidative Stress and Redox-Active Iron in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2004, 1012, 179-182.	1.8	179
101	The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neuroscience, 1999, 89, 687-699.	1.1	177
102	From Aging to Alzheimer's Disease: Unveiling "The Switch―with the Senescence-Accelerated Mouse Model (SAMP8). Journal of Alzheimer's Disease, 2008, 15, 615-624.	1.2	177
103	Lipoic Acid and N-acetyl Cysteine Decrease Mitochondrial-Related Oxidative Stress in Alzheimer Disease Patient Fibroblasts. Journal of Alzheimer's Disease, 2007, 12, 195-206.	1.2	176
104	Three Histidine Residues of Amyloid-β Peptide Control the Redox Activity of Copper and Iron. Biochemistry, 2007, 46, 12737-12743.	1.2	175
105	Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Research, 1998, 788, 232-236.	1.1	173
106	Meta-analysis of Telomere Length in Alzheimer's Disease. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 1069-1073.	1.7	173
107	Oxidative Stress and Neurodegeneration. Annals of the New York Academy of Sciences, 2005, 1043, 545-552.	1.8	172
108	Nanoparticle iron chelators: A new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neuroscience Letters, 2006, 406, 189-193.	1.0	172

#	Article	IF	CITATIONS
109	Overexpression of Heme Oxygenase in Neuronal Cells, the Possible Interaction with Tau. Journal of Biological Chemistry, 2000, 275, 5395-5399.	1.6	171
110	Challenging the Amyloid Cascade Hypothesis: Senile Plaques and Amyloid-Î ² as Protective Adaptations to Alzheimer Disease. Annals of the New York Academy of Sciences, 2004, 1019, 1-4.	1.8	169
111	Iron: The Redox-active Center of Oxidative Stress in Alzheimer Disease. Neurochemical Research, 2007, 32, 1640-1645.	1.6	169
112	Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. Journal of Alzheimer's Disease, 2006, 9, 147-153.	1.2	167
113	Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 33, S253-S262.	1.2	166
114	Luteinizing hormone modulates cognition and amyloid-β deposition in Alzheimer APP transgenic mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 447-452.	1.8	165
115	Hydroxynonenal adducts indicate a role for lipid peroxidation in neocortical and brainstem Lewy bodies in humans. Neuroscience Letters, 2002, 319, 25-28.	1.0	164
116	Vascular oxidative stress in Alzheimer disease. Journal of the Neurological Sciences, 2007, 257, 240-246.	0.3	164
117	Chondroitin Sulfate Proteoglycans Are Associated with the Lesions of Alzheimer's Disease. Experimental Neurology, 1993, 121, 149-152.	2.0	163
118	Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. Journal of Neurochemistry, 2001, 76, 565-572.	2.1	163
119	Oxidative Damage to RNA in Aging and Neurodegenerative Disorders. Neurotoxicity Research, 2012, 22, 231-248.	1.3	162
120	Vascular Oxidative Stress: Impact and Therapeutic Approaches. Frontiers in Physiology, 2018, 9, 1668.	1.3	158
121	Pathomechanisms of TDPâ€43 in neurodegeneration. Journal of Neurochemistry, 2018, 146, 7-20.	2.1	157
122	Ectopic localization of phosphorylated histone H3 in Alzheimer's disease: a mitotic catastrophe?. Acta Neuropathologica, 2003, 105, 524-528.	3.9	155
123	Luteinizing Hormone, a Reproductive Regulator That Modulates the Processing of Amyloid-β Precursor Protein and Amyloid-β Deposition. Journal of Biological Chemistry, 2004, 279, 20539-20545.	1.6	154
124	Tau – an inhibitor of deacetylase HDAC6 function. Journal of Neurochemistry, 2009, 109, 1756-1766.	2.1	153
125	The glucose transporter of the human brain and blood-brain barrier. Annals of Neurology, 1988, 24, 757-764.	2.8	150
126	Alzheimer Disease Pathology As a Host Response. Journal of Neuropathology and Experimental Neurology, 2008, 67, 523-531.	0.9	150

#	Article	IF	CITATIONS
127	4-Oxo-2-nonenal Is Both More Neurotoxic and More Protein Reactive than 4-Hydroxy-2-nonenal. Chemical Research in Toxicology, 2005, 18, 1219-1231.	1.7	147
128	Oxidative Stress Is an Early Event in Hydrostatic Pressure–Induced Retinal Ganglion Cell Damage. , 2007, 48, 4580.		147
129	Increased Autophagic Degradation of Mitochondria in Alzheimer Disease. Autophagy, 2007, 3, 614-615.	4.3	147
130	Abortive apoptosis in Alzheimer's disease. Acta Neuropathologica, 2001, 101, 305-310.	3.9	146
131	The Role of Oxidative Stress in the Pathophysiology of Cerebrovascular Lesions in Alzheimer's Disease. Brain Pathology, 2002, 12, 21-35.	2.1	146
132	Metabolic, Metallic, and Mitotic Sources of Oxidative Stress in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 413-420.	2.5	145
133	Amyloid-β in Alzheimer Disease: The Null versus the Alternate Hypotheses. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 823-829.	1.3	144
134	The Vascular Impairment of Cognition Classification Consensus Study. Alzheimer's and Dementia, 2017, 13, 624-633.	0.4	143
135	Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1741, 246-252.	1.8	142
136	Neuronal RNA oxidation is a prominent feature of familial Alzheimer's disease. Neurobiology of Disease, 2004, 17, 108-113.	2.1	141
137	Activation of MKK6, an upstream activator of p38, in Alzheimer's disease. Journal of Neurochemistry, 2008, 79, 311-318.	2.1	141
138	A Synergistic Dysfunction of Mitochondrial Fission/Fusion Dynamics and Mitophagy in Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 20, S401-S412.	1.2	141
139	Chronic oxidative stress causes increased tau phosphorylation in M17 neuroblastoma cells. Neuroscience Letters, 2010, 468, 267-271.	1.0	141
140	Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathologica, 1995, 89, 291-295.	3.9	139
141	Current approaches in the treatment of Alzheimer's disease. Biomedicine and Pharmacotherapy, 2008, 62, 199-207.	2.5	139
142	Reexamining Alzheimer's Disease: Evidence for a Protective Role for Amyloid-β Protein Precursor and Amyloid-β. Journal of Alzheimer's Disease, 2009, 18, 447-452.	1.2	139
143	Autophagocytosis of Mitochondria Is Prominent in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 525-532.	0.9	138
144	Nanoparticle–chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: A novel therapeutic approach for Alzheimer disease. Neuroscience Letters, 2009, 455, 187-190.	1.0	138

#	Article	IF	CITATIONS
145	Mitochondrial DNA Oxidative Damage and Repair in Aging and Alzheimer's Disease. Antioxidants and Redox Signaling, 2013, 18, 2444-2457.	2.5	138
146	Paramyosin and actin in schistosomal teguments. Nature, 1988, 333, 76-78.	13.7	137
147	Three-Dimensional Tomographic Imaging and Characterization of Iron Compounds within Alzheimer's Plaque Core Material. Journal of Alzheimer's Disease, 2008, 14, 235-245.	1.2	136
148	Alzheimer Disease and the Role of Free Radicals in the Pathogenesis of the Disease. CNS and Neurological Disorders - Drug Targets, 2008, 7, 3-10.	0.8	136
149	Neurofilament proteins in neurodegenerative diseases. Cellular and Molecular Life Sciences, 2004, 61, 3057-3075.	2.4	135
150	Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. Environmental Research, 2016, 146, 404-417.	3.7	135
151	Role of vascular hypoperfusion-induced oxidative stress and mitochondria failure in the pathogenesis of Alzheimer disease. Neurotoxicity Research, 2003, 5, 491-504.	1.3	134
152	Advanced Maillard Reaction End Products, Free Radicals, and Protein Oxidation in Alzheimer's Disease ^a . Annals of the New York Academy of Sciences, 1994, 738, 447-454.	1.8	134
153	RNA oxidation in Alzheimer disease and related neurodegenerative disorders. Acta Neuropathologica, 2009, 118, 151-166.	3.9	134
154	PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer's disease. Human Molecular Genetics, 2016, 25, 792-806.	1.4	134
155	Senile plaque composition and posttranslational modification of amyloid-β peptide and associated proteins. Peptides, 2002, 23, 1343-1350.	1.2	133
156	Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age, 2008, 30, 209-215.	3.0	133
157	β-Amyloid of Alzheimer's Disease Induces Reactive Gliosis That Inhibits Axonal Outgrowth. Experimental Neurology, 1993, 124, 289-298.	2.0	132
158	Hibernation, a Model of Neuroprotection. American Journal of Pathology, 2001, 158, 2145-2151.	1.9	131
159	Antioxidant Therapy in Alzheimers Disease: Theory and Practice. Mini-Reviews in Medicinal Chemistry, 2008, 8, 1395-1406.	1.1	129
160	Iron: A Pathological Mediator of Alzheimer Disease?. Developmental Neuroscience, 2002, 24, 184-187.	1.0	127
161	Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathologica, 2006, 111, 503-509.	3.9	127
162	Hirano Body Filaments Contain Actin and Actin-Associated Proteins. Journal of Neuropathology and Experimental Neurology, 1987, 46, 185-199.	0.9	126

#	Article	IF	CITATIONS
163	Oxidative Imbalance in Alzheimer's Disease. Molecular Neurobiology, 2005, 31, 205-218.	1.9	126
164	Overview of Alzheimer's Disease and Some Therapeutic Approaches Targeting A <i>β</i> by Using Several Synthetic and Herbal Compounds. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-22.	1.9	126
165	Barrier properties of testis microvessels. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 11069-11073.	3.3	125
166	Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2009, 54, 84-88.	1.9	125
167	Insulin is a Two-Edged Knife on the Brain. Journal of Alzheimer's Disease, 2009, 18, 483-507.	1.2	124
168	AGEs/RAGE complex upregulates BACE1 via NF-κB pathway activation. Neurobiology of Aging, 2012, 33, 196.e13-196.e27.	1.5	123
169	Inhibition of mitochondrial fragmentation protects against Alzheimer's disease in rodent model. Human Molecular Genetics, 2017, 26, 4118-4131.	1.4	123
170	High Molecular Weight Neurofilament Proteins Are Physiological Substrates of Adduction by the Lipid Peroxidation Product Hydroxynonenal. Journal of Biological Chemistry, 2002, 277, 4644-4648.	1.6	122
171	Elevated luteinizing hormone expression colocalizes with neurons vulnerable to Alzheimer's disease pathology. Journal of Neuroscience Research, 2002, 70, 514-518.	1.3	122
172	Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. Journal of Alzheimer's Disease, 2018, 64, S47-S105.	1.2	122
173	Plasma amyloid β 40/42 ratio predicts cerebral amyloidosis in cognitively normal individuals at risk for Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 764-775.	0.4	122
174	α1-Antitrypsin and α1-antichymotrypsin are in the lesions of Alzheimer's disease. NeuroReport, 1992, 3, 201-203.	0.6	121
175	Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. Journal of Neuroscience Research, 2003, 71, 863-870.	1.3	121
176	Advances in Alzheimer's Diagnosis and Therapy: The Implications of Nanotechnology. Trends in Biotechnology, 2017, 35, 937-953.	4.9	121
177	Clâ^'-ATPase and Na+/K+-ATPase activities in Alzheimer's disease brains. Neuroscience Letters, 1998, 254, 141-144.	1.0	120
178	Early Glycoxidation Damage in Brains from Down's Syndrome. Biochemical and Biophysical Research Communications, 1998, 243, 849-851.	1.0	120
179	Amyloid-β-Derived Diffusible Ligands Cause Impaired Axonal Transport of Mitochondria in Neurons. Neurodegenerative Diseases, 2010, 7, 56-59.	0.8	120
180	Neuronal Death and Survival Under Oxidative Stress in Alzheimer and Parkinson Diseases. CNS and Neurological Disorders - Drug Targets, 2007, 6, 411-423.	0.8	119

#	Article	IF	CITATIONS
181	Oxidative Stress: The Old Enemy in Alzheimers Disease Pathophysiology. Current Alzheimer Research, 2005, 2, 403-408.	0.7	117
182	Increased Neuronal Glucose-6-phosphate Dehydrogenase and Sulfhydryl Levels Indicate Reductive Compensation to Oxidative Stress in Alzheimer Disease. Archives of Biochemistry and Biophysics, 1999, 370, 236-239.	1.4	116
183	The Role of Iron and Copper in the Aetiology of Neurodegenerative Disorders. CNS Drugs, 2002, 16, 339-352.	2.7	115
184	Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radical Biology and Medicine, 2005, 38, 746-754.	1.3	115
185	Leptin: A Novel Therapeutic Strategy for Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 16, 731-740.	1.2	114
186	Free radical damage, iron, and Alzheimer's disease. Journal of the Neurological Sciences, 1995, 134, 92-94.	0.3	113
187	Oxidative stress mechanisms and potential therapeutics in Alzheimer disease. Journal of Neural Transmission, 2005, 112, 921-932.	1.4	113
188	Cleavage and conformational changes of tau protein follow phosphorylation during Alzheimer's disease. International Journal of Experimental Pathology, 2008, 89, 81-90.	0.6	113
189	DLP1â€dependent mitochondrial fragmentation mediates 1â€methylâ€4â€phenylpyridinium toxicity in neurons: implications for Parkinson's disease. Aging Cell, 2011, 10, 807-823.	3.0	113
190	Quinone reductase (NQO1), a sensitive redox indicator, is increased in Alzheimer's disease. Redox Report, 1999, 4, 23-27.	1.4	111
191	Mitochondrial failures in Alzheimer's disease. American Journal of Alzheimer's Disease and Other Dementias, 2004, 19, 345-352.	0.9	111
192	Mechanisms of Neurotoxicity Associated with Amyloid β Deposition and the Role of Free Radicals in the Pathogenesis of Alzheimer's Disease:  A Critical Appraisal. Chemical Research in Toxicology, 1997, 10, 518-526.	1.7	110
193	Dysregulation of leptin signaling in Alzheimer disease: evidence for neuronal leptin resistance. Journal of Neurochemistry, 2014, 128, 162-172.	2.1	110
194	Phosphorylation of Tau Protein as the Link between Oxidative Stress, Mitochondrial Dysfunction, and Connectivity Failure: Implications for Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-6.	1.9	108
195	A suicide note from Alzheimer disease neurons?. Nature Medicine, 1998, 4, 897-898.	15.2	107
196	Neuronal RNA Oxidation in Alzheimer's Disease and Down's Syndrome. Annals of the New York Academy of Sciences, 1999, 893, 362-364.	1.8	107
197	Oxidative damage in Alzheimer's disease: the metabolic dimension. International Journal of Developmental Neuroscience, 2000, 18, 417-421.	0.7	106
198	Mitochondrial Abnormalities in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 406-419.	0.7	106

#	Article	IF	CITATIONS
199	Neuronal mitochondrial amelioration by feeding acetyl‣â€carnitine and lipoic acid to aged rats. Journal of Cellular and Molecular Medicine, 2009, 13, 320-333.	1.6	105
200	Cellular prion protein is essential for oligomeric amyloid-Â-induced neuronal cell death. Human Molecular Genetics, 2012, 21, 1138-1144.	1.4	105
201	In vivo visualization of tau deposits in corticobasal syndrome by ¹⁸ F-THK5351 PET. Neurology, 2016, 87, 2309-2316.	1.5	105
202	MAPK signalling pathway in cancers: Olive products as cancer preventive and therapeutic agents. Seminars in Cancer Biology, 2019, 56, 185-195.	4.3	105
203	All- <i>trans</i> retinoic acid as a novel therapeutic strategy for Alzheimer's disease. Expert Review of Neurotherapeutics, 2009, 9, 1615-1621.	1.4	104
204	Increases in luteinizing hormone are associated with declines in cognitive performance. Molecular and Cellular Endocrinology, 2007, 269, 107-111.	1.6	103
205	Antioxidant approaches for the treatment of Alzheimer's disease. Expert Review of Neurotherapeutics, 2010, 10, 1201-1208.	1.4	103
206	Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer's disease. Redox Report, 2010, 15, 161-168.	1.4	103
207	High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Scientific Reports, 2016, 6, 24873.	1.6	103
208	Apoptosis and Alzheimer's Disease. , 1998, 282, 1265h-1265.		103
209	Involvement of maillard reactions in Alzheimer disease. Neurotoxicity Research, 2002, 4, 191-209.	1.3	100
210	Alzheimer disease: Evidence for a central pathogenic role of iron-mediated reactive oxygen species. Journal of Alzheimer's Disease, 2004, 6, 165-169.	1.2	100
211	The Earliest Stage of Cognitive Impairment in Transition From Normal Aging to Alzheimer Disease Is Marked by Prominent RNA Oxidation in Vulnerable Neurons. Journal of Neuropathology and Experimental Neurology, 2012, 71, 233-241.	0.9	100
212	Amyloid Beta: The Alternate Hypothesis. Current Alzheimer Research, 2006, 3, 75-80.	0.7	99
213	Oxidative Damage to RNA in Neurodegenerative Diseases. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-6.	3.0	98
214	Deconstructing Mitochondrial Dysfunction in Alzheimer Disease. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-13.	1.9	98
215	Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Research Bulletin, 2001, 55, 125-132.	1.4	97
216	The cell cycle in Alzheimer disease: A unique target for neuropharmacology. Mechanisms of Ageing and Development, 2005, 126, 1019-1025.	2.2	97

#	Article	IF	CITATIONS
217	A novel approach to the identification and quantitative elemental analysis of amyloid deposits—Insights into the pathology of Alzheimer's disease. Biochemical and Biophysical Research Communications, 2009, 382, 91-95.	1.0	96
218	Signal Transduction Cascades Associated with Oxidative Stress in Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 11, 143-152.	1.2	95
219	NMR Studies of Zinc, Copper, and Iron Binding to Histidine, the Principal Metal Ion Complexing Site of Amyloid-β Peptide. Journal of Alzheimer's Disease, 2010, 20, 57-66.	1.2	95
220	Neuronal failure in Alzheimer's disease: a view through the oxidative stress looking-glass. Neuroscience Bulletin, 2014, 30, 243-252.	1.5	95
221	Slower Dynamics and Aged Mitochondria in Sporadic Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	1.9	95
222	Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. BioMetals, 2003, 16, 77-81.	1.8	94
223	Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Molecular Aspects of Medicine, 2003, 24, 305-313.	2.7	94
224	Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease. Ageing Research Reviews, 2004, 3, 319-326.	5.0	94
225	Mitochondria and vascular lesions as a central target for the development of Alzheimer's disease and Alzheimer disease-like pathology in transgenic mice. Neurological Research, 2003, 25, 665-674.	0.6	93
226	Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radical Biology and Medicine, 2007, 43, 1569-1573.	1.3	93
227	Hirano bodies contain tau protein. Brain Research, 1987, 403, 337-340.	1.1	92
228	Formation of aberrant phosphotau fibrillar polymers in neural cultured cells. FEBS Journal, 2002, 269, 1484-1489.	0.2	92
229	Vascular abnormalities: the insidious pathogenesis of Alzheimer's diseaseâ~†. Neurobiology of Aging, 2000, 21, 357-361.	1.5	91
230	Apoptosis in Alzheimer Disease: A Mathematical Improbability. Current Alzheimer Research, 2006, 3, 393-396.	0.7	90
231	Carnosine: A Versatile Antioxidant and Antiglycating Agent. Science of Aging Knowledge Environment: SAGE KE, 2005, 2005, pe12-pe12.	0.9	90
232	The widespread alteration of neurites in Alzheimer's disease may be unrelated to amyloid deposition. Annals of Neurology, 1989, 26, 771-778.	2.8	89
233	The state versus amyloid-β: the trial of the most wanted criminal in Alzheimer disease. Peptides, 2002, 23, 1333-1341.	1.2	88
234	Atherosclerotic Lesions and Mitochondria DNA Deletions in Brain Microvessels as a Central Target for the Development of Human AD and AD‣ike Pathology in Aged Transgenic Mice. Annals of the New York Academy of Sciences, 2002, 977, 45-64.	1.8	88

#	Article	IF	CITATIONS
235	Increased p27, an essential component of cell cycle control, in Alzheimer's disease. Aging Cell, 2003, 2, 105-110.	3.0	88
236	Intraneuronal amyloid β accumulation and oxidative damage to nucleic acids in Alzheimer disease. Neurobiology of Disease, 2010, 37, 731-737.	2.1	88
237	Posttranslational modifications of α-tubulin in alzheimer disease. Translational Neurodegeneration, 2015, 4, 9.	3.6	88
238	Nanoscale synchrotron X-ray speciation of iron and calcium compounds in amyloid plaque cores from Alzheimer's disease subjects. Nanoscale, 2018, 10, 11782-11796.	2.8	88
239	Oxidative damage in cultured human olfactory neurons from Alzheimer's disease patients. Aging Cell, 2004, 3, 41-44.	3.0	87
240	Nanoparticle and Iron Chelators as a Potential Novel Alzheimer Therapy. Methods in Molecular Biology, 2010, 610, 123-144.	0.4	87
241	Mitochondrial Dynamics in Alzheimer's Disease. Drugs and Aging, 2010, 27, 181-192.	1.3	86
242	Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxidants and Redox Signaling, 2021, 34, 591-610.	2.5	86
243	Metal ions and oxidative protein modification in neurological disease. Annali Dell'Istituto Superiore Di Sanita, 2005, 41, 143-64.	0.2	86
244	Role of high mobility group protein-1 (HMG1) in amyloid-β homeostasis. Biochemical and Biophysical Research Communications, 2003, 301, 699-703.	1.0	85
245	Pathogenesis and Disease-modifying Therapy in Alzheimer's Disease: The Flat Line of Progress. Archives of Medical Research, 2012, 43, 694-698.	1.5	85
246	Soluble derivatives of the β amyloid protein precursor of Alzheimer's disease are labeled by antisera to the β amyloid protein. Biochemical and Biophysical Research Communications, 1989, 165, 182-188.	1.0	84
247	The neuroprotective activities of melatonin against the Alzheimer β-protein are not mediated by melatonin membrane receptors. Journal of Pineal Research, 2002, 32, 135-142.	3.4	83
248	Evidence for oxidative stress in Pick disease and corticobasal degeneration. Brain Research, 1995, 696, 268-271.	1.1	82
249	Lipoperoxidation Is Selectively Involved in Progressive Supranuclear Palsy. Journal of Neuropathology and Experimental Neurology, 2000, 59, 393-397.	0.9	82
250	The Neuronal Expression of MYC Causes a Neurodegenerative Phenotype in a Novel Transgenic Mouse. American Journal of Pathology, 2009, 174, 891-897.	1.9	82
251	Parallels Between Major Depressive Disorder and Alzheimer's Disease: Role of Oxidative Stress and Genetic Vulnerability. Cellular and Molecular Neurobiology, 2014, 34, 925-949.	1.7	82
252	The amyloid cascade and Alzheimer's disease therapeutics: theory versus observation. Laboratory Investigation, 2019, 99, 958-970.	1.7	82

#	Article	IF	CITATIONS
253	Lipid peroxidation and 4-hydroxy-2-nonenal formation by copper ion bound to amyloid-β peptide. Free Radical Biology and Medicine, 2007, 43, 1552-1559.	1.3	81
254	Microglia are associated with the extracellular neurofibrillary tangles of alzheimer disease. Brain Research, 1991, 558, 312-314.	1.1	80
255	Phosphorylated Tau: Toxic, Protective, or None of the Above. Journal of Alzheimer's Disease, 2008, 14, 377-383.	1.2	80
256	Oxidative Stress, Antioxidants, and Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2000, 14, S62-S66.	0.6	79
257	Amyloid-β junkies. Lancet, The, 2000, 355, 757.	6.3	79
258	Physiological regulation of tau phosphorylation during hibernation. Journal of Neurochemistry, 2008, 105, 2098-2108.	2.1	79
259	Precision pharmacology for Alzheimer's disease. Pharmacological Research, 2018, 130, 331-365.	3.1	79
260	Sex differences in functional and molecular neuroimaging biomarkers of Alzheimer's disease in cognitively normal older adults with subjective memory complaints. Alzheimer's and Dementia, 2018, 14, 1204-1215.	0.4	79
261	Accelerated α-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Research, 2004, 1013, 51-59.	1.1	78
262	Markers of oxidative damage to lipids, nucleic acids and proteins and antioxidant enzymes activities in Alzheimer's disease brain: A meta-analysis in human pathological specimens. Free Radical Biology and Medicine, 2018, 115, 351-360.	1.3	78
263	Amyloid-β-induced toxicity of primary neurons is dependent upon differentiation-associated increases in tau and cyclin-dependent kinase 5 expression. Journal of Neurochemistry, 2003, 88, 554-563.	2.1	77
264	Mitochondria as a primary target for vascular hypoperfusion and oxidative stress in Alzheimer's disease. Mitochondrion, 2004, 4, 649-663.	1.6	77
265	The complexities of the pathology–pathogenesis relationship in Alzheimer disease. Biochemical Pharmacology, 2014, 88, 671-676.	2.0	77
266	Mexico City normal weight children exposed to high concentrations of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and food reward hormone dysregulation versus low pollution controls. Relevance for obesity and Alzheimer disease. Environmental Research, 2015, 140, 579-592.	3.7	77
267	Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Molecular Neurodegeneration, 2018, 13, 5.	4.4	77
268	Alz 50 recognizes abnormal filaments in Alzheimer's disease and progressive supranuclear palsy. Annals of Neurology, 1988, 24, 407-413.	2.8	76
269	Overexpression of GRK2 in alzheimer disease and in a chronic hypoperfusion rat model is an early marker of brain mitochondrial lesions. Neurotoxicity Research, 2006, 10, 43-56.	1.3	76
270	Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture. Journal of the American Medical Informatics Association: JAMIA, 2014, 21, 615-620.	2.2	76

#	Article	IF	CITATIONS
271	Islet Amyloid Polypeptide (IAPP): A Second Amyloid in Alzheimer's Disease. Current Alzheimer Research, 2014, 11, 928-940.	0.7	76
272	The Amyloid Precursor Protein in Ischemic Brain Injury and Chronic Hypoperfusiona. Annals of the New York Academy of Sciences, 1993, 695, 190-193.	1.8	75
273	c-Jun phosphorylation in Alzheimer disease. Journal of Neuroscience Research, 2007, 85, 1668-1673.	1.3	75
274	Alzheimer's Disease: Cerebrovascular Dysfunction, Oxidative stress, and Advanced Clinical Therapies. Journal of Alzheimer's Disease, 2008, 15, 199-210.	1.2	75
275	Abnormal Mitochondrial Dynamics—A Novel Therapeutic Target for Alzheimer's Disease?. Molecular Neurobiology, 2010, 41, 87-96.	1.9	75
276	The Alzheimer Precision Medicine Initiative. Journal of Alzheimer's Disease, 2019, 68, 1-24.	1.2	75
277	Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. International Journal of Clinical and Experimental Pathology, 2010, 3, 570-81.	0.5	75
278	Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Research Reviews, 2021, 69, 101346.	5.0	74
279	Immunochemical Properties of Ubiquitin Conjugates in the Paired Helical Filaments of Alzheimer Disease. Journal of Neurochemistry, 1989, 52, 1523-1528.	2.1	73
280	Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1909-1917.	1.8	73
281	Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. Journal of Alzheimer's Disease, 2019, 67, 447-467.	1.2	73
282	Evidence for the progression through S-phase in the ectopic cell cycle re-entry of neurons in Alzheimer disease. Aging, 2009, 1, 382-388.	1.4	73
283	Is increased redox-active iron in Alzheimer disease a failure of the copper-binding protein ceruloplasmin?. Free Radical Biology and Medicine, 1999, 26, 1508-1512.	1.3	72
284	AMYLOID PRECURSOR PROTEIN IN SENILE PLAQUES OF ALZHEIMER DISEASE. Lancet, The, 1988, 332, 746.	6.3	71
285	Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Seminars in Cancer Biology, 2021, 69, 150-165.	4.3	71
286	Cerebrovascular muscle atrophy is a feature of Alzheimer's disease. Brain Research, 1998, 791, 63-66.	1.1	70
287	Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. NeuroReport, 2002, 13, 2035-2039.	0.6	70
288	Amyloid-β, tau alterations and mitochondrial dysfunction in Alzheimer disease: the chickens or the eggs?. Neurochemistry International, 2002, 40, 527-531.	1.9	70

#	Article	IF	CITATIONS
289	Cholesterol, oxidative stress, and Alzheimer's disease: expanding the horizons of pathogenesis1 1This article is part of a series of reviews on "Causes and Consequences of Oxidative Stress in Alzheimer's Disease.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine, 2002, 33, 173-181.	1.3	70
290	Early AGEing and Alzheimer's. Nature, 1995, 374, 316-316.	13.7	69
291	Reactive Oxygen Species and Their Impact in Neurodegenerative Diseases: Literature Landscape Analysis. Antioxidants and Redox Signaling, 2021, 34, 402-420.	2.5	69
292	Oxidative Damage to Nucleic Acids in Human Prion Disease. Neurobiology of Disease, 2002, 9, 275-281.	2.1	68
293	Telomeres and telomerase in Alzheimer's disease: Epiphenomena or a new focus for therapeutic strategy?. , 2006, 2, 164-168.		68
294	Ectopic expression of phospho-Smad2 in Alzheimer's disease: Uncoupling of the transforming growth factor-β pathway?. Journal of Neuroscience Research, 2006, 84, 1856-1861.	1.3	68
295	A Primate Model for Human Cerebral Malaria: Plasmodium coatneyi-Infected Rhesus Monkeys. American Journal of Tropical Medicine and Hygiene, 1992, 46, 391-397.	0.6	68
296	Oxidative damage in the olfactory system in Alzheimer's disease. Acta Neuropathologica, 2003, 106, 552-556.	3.9	67
297	Oxidative Stress and Neuronal Adaptation in Alzheimer Disease: The Role of SAPK Pathways. Antioxidants and Redox Signaling, 2003, 5, 571-576.	2.5	67
298	RNA and Oxidative Stress in Alzheimer's Disease: Focus on microRNAs. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-16.	1.9	66
299	Polyphenols in Alzheimer's Disease and in the Gut–Brain Axis. Microorganisms, 2020, 8, 199.	1.6	66
300	Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer's disease. Free Radical Research, 2009, 43, 156-164.	1.5	65
301	Expression of CD74 is increased in neurofibrillary tangles in Alzheimer's disease. Molecular Neurodegeneration, 2008, 3, 13.	4.4	64
302	The role of iron as a mediator of oxidative stress in Alzheimer disease. BioFactors, 2012, 38, 133-138.	2.6	64
303	Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer's and other neurodegenerative diseases. Translational Psychiatry, 2013, 3, e332-e332.	2.4	64
304	Quantitative solubilization and analysis of insoluble paired helical filaments from alzheimer disease. Brain Research, 1996, 717, 99-108.	1.1	63
305	Prion Protein Glycosylation Is Sensitive to Redox Change. Journal of Biological Chemistry, 1999, 274, 34846-34850.	1.6	63
306	Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer's disease. Journal of Neuroscience Research, 2004, 75, 698-703.	1.3	63

#	Article	IF	CITATIONS
307	Role of mitochondrial-mediated signaling pathways in Alzheimer disease and hypoxia. Journal of Bioenergetics and Biomembranes, 2009, 41, 433-440.	1.0	63
308	Rosmarinic acid prevents fibrillization and diminishes vibrational modes associated to β sheet in tau protein linked to Alzheimer's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 945-953.	2.5	63
309	Oxidative posttranslational modifications in Alzheimer disease. Molecular and Chemical Neuropathology, 1996, 28, 41-48.	1.0	62
310	Induction of HO-1 and NOS in Doppel-Expressing Mice Devoid of PrP: Implications for Doppel Function. Molecular and Cellular Neurosciences, 2001, 17, 768-775.	1.0	62
311	Increased Expression of the Remodeling- and Tumorigenic-Associated Factor Osteopontin in Pyramidal Neurons of the Alzheimers Disease Brain. Current Alzheimer Research, 2007, 4, 67-72.	0.7	62
312	TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Molecular and Cellular Neurosciences, 2019, 100, 103396.	1.0	62
313	Antioxidant protection and neurodegenerative disease: The role of amyloid-β and tau. American Journal of Alzheimer's Disease and Other Dementias, 2006, 21, 126-130.	0.9	61
314	Causes versus effects: the increasing complexities of Alzheimer's disease pathogenesis. Expert Review of Neurotherapeutics, 2010, 10, 683-691.	1.4	61
315	Basic fibroblast growth factor binding is a marker for extracellular neurofibrillary tangles in Alzheimer disease Journal of Histochemistry and Cytochemistry, 1991, 39, 899-904.	1.3	60
316	JKK1, an upstream activator of JNK/SAPK, is activated in Alzheimer's disease. Journal of Neurochemistry, 2003, 85, 87-93.	2.1	60
317	Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathologica, 2004, 107, 365-371.	3.9	60
318	Arson: Tracking the Culprit in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2000, 924, 35-38.	1.8	60
319	Diet and Oxidative Stress: A Novel Synthesis of Epidemiological Data on Alzheimer's Disease*. Journal of Alzheimer's Disease, 1999, 1, 203-206.	1.2	59
320	Comparative biology and pathology of oxidative stress in Alzheimer and other neurodegenerative diseases: beyond damage and response. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 507-513.	1.3	59
321	Prevention and Treatment of Alzheimer Disease and Aging: Antioxidants. Mini-Reviews in Medicinal Chemistry, 2007, 7, 171-180.	1.1	59
322	Phosphorylation of Tau protein correlates with changes in hippocampal theta oscillations and reduces hippocampal excitability in Alzheimer's model. Journal of Biological Chemistry, 2018, 293, 8462-8472.	1.6	59
323	Decreased salivary lactoferrin levels are specific to Alzheimer's disease. EBioMedicine, 2020, 57, 102834.	2.7	59
324	LRRK2 protein is a component of lewy bodies. Annals of Neurology, 2006, 60, 617-618.	2.8	57

#	Article	IF	CITATIONS
325	Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Molecular Neurodegeneration, 2007, 2, 2.	4.4	57
326	Neuroprotective effect of cocoa flavonids on in vitro oxidative stress. European Journal of Nutrition, 2009, 48, 54-61.	1.8	57
327	Biomarkers in Alzheimer's disease: past, present and future. Biomarkers in Medicine, 2010, 4, 15-26.	0.6	57
328	Mitochondrial Importance in Alzheimer's, Huntington's and Parkinson's Diseases. Advances in Experimental Medicine and Biology, 2012, 724, 205-221.	0.8	57
329	BARHL1 Is Downregulated in Alzheimer's Disease and May Regulate Cognitive Functions through ESR1 and Multiple Pathways. Genes, 2017, 8, 245.	1.0	57
330	Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain, 2019, 142, 3672-3693.	3.7	57
331	Perspectives on the Amyloid-Î ² Cascade Hypothesis. Journal of Alzheimer's Disease, 2004, 6, 137-145.	1.2	56
332	The impairment of insulin signaling in Alzheimer's disease. IUBMB Life, 2012, 64, 951-957.	1.5	56
333	Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget, 2016, 7, 38999-39016.	0.8	56
334	Neurofilamentopathy in Neurodegenerative Diseases. The Open Neurology Journal, 2011, 5, 58-62.	0.4	56
335	BRCA1 May Modulate Neuronal Cell Cycle Re-Entry in Alzheimer Disease. International Journal of Medical Sciences, 2007, 4, 140-145.	1.1	56
336	The presence of tau distinguishes Lewy bodies of diffuse Lewy body disease from those of idiopathic Parkinson disease. Neuroscience Letters, 1989, 100, 6-10.	1.0	55
337	Distribution, levels, and activation of MEK1 in Alzheimer's disease. Journal of Neurochemistry, 2004, 86, 136-142.	2.1	55
338	Mitochondria DNA deletions in atherosclerotic hypoperfused brain microvessels as a primary target for the development of Alzheimer's disease. Journal of the Neurological Sciences, 2005, 229-230, 285-292.	0.3	55
339	Detection and Localization of Markers of Oxidative Stress by In Situ Methods: Application in the Study of Alzheimer Disease. Methods in Molecular Biology, 2010, 610, 419-434.	0.4	55
340	Miro1 deficiency in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2015, 7, 100.	1.7	55
341	Altered Glycosylation Pattern of Proteins in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 1998, 57, 905-914.	0.9	54
342	Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintenance of vascular integrity and blood supply. Brain Research Reviews, 2003, 43, 164-178.	9.1	54

#	Article	IF	CITATIONS
343	Neuroprotective properties of Bcl-w in Alzheimer disease. Journal of Neurochemistry, 2004, 89, 1233-1240.	2.1	54
344	Cerebral amyloid angiopathy: major contributor or decorative response to Alzheimer's disease pathogenesis. Neurobiology of Aging, 2004, 25, 599-602.	1.5	54
345	Amyloid-β in Alzheimer's disease: the horse or the cart? Pathogenic or protective?. International Journal of Experimental Pathology, 2005, 86, 133-138.	0.6	54
346	Low Plasma Leptin in Cognitively Impaired ADNI Subjects: Gender Differences and Diagnostic and Therapeutic Potential. Current Alzheimer Research, 2014, 11, 165-174.	0.7	54
347	Levuglandin E2â^'Protein Adducts in Human Plasma and Vasculature. Chemical Research in Toxicology, 1997, 10, 536-545.	1.7	53
348	Protein Disulfide Isomerase in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 485-489.	2,5	53
349	Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 133, 483-492.	1.3	53
350	Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels: Implication in the pathogenesis of Alzheimer's disease. Vascular Health and Risk Management, 2008, Volume 4, 721-730.	1.0	53
351	ESCRT-0 dysfunction compromises autophagic degradation of protein aggregates and facilitates ER stress-mediated neurodegeneration via apoptotic and necroptotic pathways. Scientific Reports, 2016, 6, 24997.	1.6	53
352	Antigenic profile of plaques and neurofibrillary tangles in the amygdala in Down's syndrome: a comparison with Alzheimer's disease. Brain Research, 1990, 537, 102-108.	1.1	52
353	Predicting the failure of amyloid-l ² vaccine. Lancet, The, 2002, 359, 1864-1865.	6.3	52
354	Homocysteine and Alzheimer's disease: a modifiable risk?. Free Radical Biology and Medicine, 2004, 36, 1471-1475.	1.3	52
355	Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathologica, 2005, 110, 232-238.	3.9	52
356	A metabolic basis for Alzheimer disease. Neurochemical Research, 2003, 28, 1549-1552.	1.6	51
357	Aberrant localization of importin α1 in hippocampal neurons in Alzheimer disease. Brain Research, 2006, 1124, 1-4.	1.1	51
358	Neuronal binucleation in Alzheimer disease hippocampus. Neuropathology and Applied Neurobiology, 2008, 34, 457-465.	1.8	51
359	Signaling effect of amyloid-β42 on the processing of AβPP. Experimental Neurology, 2010, 221, 18-25.	2.0	51
360	Autophagy in Alzheimer's disease. Expert Review of Neurotherapeutics, 2010, 10, 1209-1218.	1.4	51

#	Article	IF	CITATIONS
361	Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Translational Neurodegeneration, 2015, 4, 14.	3.6	51
362	Curcumin/Melatonin Hybrid 5-(4-Hydroxy-phenyl)-3-oxo-pentanoic Acid [2-(5-Methoxy-1 <i>H</i> -indol-3-yl)-ethyl]-amide Ameliorates AD-Like Pathology in the APP/PS1 Mouse Model. ACS Chemical Neuroscience, 2015, 6, 1393-1399.	1.7	51
363	Telomere length in Parkinson's disease: A meta-analysis. Experimental Gerontology, 2016, 75, 53-55.	1.2	51
364	APP transgenesis: Approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiology of Aging, 1996, 17, 153-171.	1.5	50
365	Causes and consequences of oxidative stress in Alzheimer's disease 1,2 1Guest Editors: Mark A. Smith and George Perry 2This article is part of a series of reviews on "Causes and Consequences of Oxidative Stress in Alzheimer's Disease.―The full list of papers may be found on the homepage of the journal Free Radical Biology and Medicine. 2002. 32. 1049.	1.3	49
366	Therapeutic Opportunities in Alzheimer Disease: One for all or all for One?. Current Medicinal Chemistry, 2005, 12, 1137-1147.	1.2	49
367	Chronological primacy of oxidative stress in Alzheimer disease. Neurobiology of Aging, 2005, 26, 579-580.	1.5	49
368	Evaluation of Metabolic and Synaptic Dysfunction Hypotheses of Alzheimer's Disease (AD): A Meta-Analysis of CSF Markers. Current Alzheimer Research, 2018, 15, 164-181.	0.7	49
369	Dimethylargininase, a nitric oxide regulatory protein, in Alzheimer disease. Free Radical Biology and Medicine, 1998, 25, 898-902.	1.3	48
370	Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice. Journal of Pathology, 2004, 203, 603-608.	2.1	48
371	Diminished O-GlcNAcylation in Alzheimer's disease is strongly correlated with mitochondrial anomalies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2048-2059.	1.8	48
372	Biogenic metallic elements in the human brain?. Science Advances, 2021, 7, .	4.7	48
373	Rimmed vacuoles of inclusion body myositis and oculopharyngeal muscular dystrophy contain amyloid precursor protein and lysosomal markers. Brain Research, 1993, 603, 343-347.	1.1	47
374	α-Synuclein facilitates the toxicity of oxidized catechol metabolites: Implications for selective neurodegeneration in Parkinson's disease. FEBS Letters, 2006, 580, 2147-2152.	1.3	47
375	Antigen–antibody dissociation in Alzheimer disease: a novel approach to diagnosis. Journal of Neurochemistry, 2008, 106, 1350-1356.	2.1	47
376	Amyloid-β peptide structure in aqueous solution varies with fragment size. Journal of Chemical Physics, 2011, 135, 205101.	1.2	47
377	A Clinical Study of Lupron Depot in the Treatment of Women with Alzheimer's Disease: Preservation of Cognitive Function in Patients Taking an Acetylcholinesterase Inhibitor and Treated with High Dose Lupron Over 48 Weeks. Journal of Alzheimer's Disease, 2015, 44, 549-560.	1.2	47
378	The Need to Separate Chronic Traumatic Encephalopathy Neuropathology from Clinical Features. Journal of Alzheimer's Disease, 2017, 61, 17-28.	1.2	47

#	Article	IF	CITATIONS
379	The Autistic Phenotype Exhibits a Remarkably Localized Modification of Brain Protein by Products of Free Radical-Induced Lipid Oxidation. American Journal of Biochemistry and Biotechnology, 2008, 4, 61-72.	0.1	47
380	Reduction of inclusion body pathology in ApoE-deficient mice fed a combination of antioxidants. Free Radical Biology and Medicine, 2003, 34, 1070-1077.	1.3	46
381	Chitin-like Polysaccharides in Alzheimers Disease Brains. Current Alzheimer Research, 2005, 2, 419-423.	0.7	46
382	Redox active iron accumulation in aceruloplasminemia. Neuropathology, 2008, 28, 466-471.	0.7	46
383	Mitochondria: The Missing Link Between Preconditioning and Neuroprotection. Journal of Alzheimer's Disease, 2010, 20, S475-S485.	1.2	46
384	Nuclear and mitochondrial DNA oxidation in Alzheimer's disease. Free Radical Research, 2012, 46, 565-576.	1.5	46
385	Influence of neuronal location on antigenic properties of neurofibrillary tangles. Annals of Neurology, 1988, 23, 604-610.	2.8	45
386	[10] In situ methods for detection and localization of markers of oxidative stress: Application in neurodegenerative disorders. Methods in Enzymology, 1999, 309, 133-152.	0.4	45
387	Amyloid-β: a (life) preserver for the brain. Neurobiology of Aging, 2002, 23, 1097-1099.	1.5	45
388	Insulin signaling, diabetes mellitus and risk of Alzheimer disease. Journal of Alzheimer's Disease, 2005, 7, 81-84.	1.2	45
389	Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer's Disease Treatment: Rethinking the Current Strategy. International Journal of Alzheimer's Disease, 2012, 2012, 1-7.	1.1	45
390	Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Scientific Reports, 2016, 6, 20352.	1.6	45
391	Association of cerebrospinal fluid αâ€synuclein with total and phosphoâ€tau ₁₈₁ protein concentrations and brain amyloid load in cognitively normal subjective memory complainers stratified by Alzheimer's disease biomarkers. Alzheimer's and Dementia, 2018, 14, 1623-1631.	0.4	45
392	Age-Related Loss of the DNA Repair Response Following Exposure to Oxidative Stress. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 427-434.	1.7	44
393	Conformational changes and cleavage of tau in Pick bodies parallel the early processing of tau found in Alzheimer pathology. Neuropathology and Applied Neurobiology, 2007, 34, 071027214335005-???.	1.8	44
394	A novel origin for granulovacuolar degeneration in aging and Alzheimer's disease: parallels to stress granules. Laboratory Investigation, 2011, 91, 1777-1786.	1.7	44
395	Lithium as a Treatment for Alzheimer's Disease: The Systems Pharmacology Perspective. Journal of Alzheimer's Disease, 2019, 69, 615-629.	1.2	44
396	α-Calcium-Calmodulin-Dependent Kinase II is Associated with Paired Helical Filaments of Alzheimer's Disease. Journal of Neuropathology and Experimental Neurology, 1996, 55, 954-963.	0.9	43

#	Article	IF	CITATIONS
397	The p38 pathway is activated in Pick disease and progressive supranuclear palsy: a mechanistic link between mitogenic pathways, oxidative stress, and tau. Neurobiology of Aging, 2002, 23, 855-859.	1.5	43
398	Functional Implications of Antiestrogen Induction of Quinone Reductase: Inhibition of Estrogen-Induced Deoxyribonucleic Acid Damage. Molecular Endocrinology, 2003, 17, 1344-1355.	3.7	43
399	Estrogen Bows to a New Master: The Role of Gonadotropins in Alzheimer Pathogenesis. Annals of the New York Academy of Sciences, 2005, 1052, 201-209.	1.8	43
400	P38 Activation Mediates Amyloid- \hat{l}^2 Cytotoxicity. Neurochemical Research, 2005, 30, 791-796.	1.6	43
401	Molecular Pathogenesis of Alzheimer's Disease: Reductionist versus Expansionist Approaches. International Journal of Molecular Sciences, 2009, 10, 1386-1406.	1.8	43
402	Proteolytic Cleavage of Polymeric Tau Protein by Caspase-3: Implications for Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1145-1161.	0.9	43
403	Impact of RTN3 Deficiency on Expression of BACE1 and Amyloid Deposition. Journal of Neuroscience, 2014, 34, 13954-13962.	1.7	43
404	Consequences of RNA oxidation on protein synthesis rate and fidelity: implications for the pathophysiology of neuropsychiatric disorders. Biochemical Society Transactions, 2017, 45, 1053-1066.	1.6	43
405	A Multilevel View of the Development of Alzheimer's Disease. Neuroscience, 2021, 457, 283-293.	1.1	43
406	Oxidative damage and Alzheimer's disease: Are antioxidant therapies useful?. Drug News and Perspectives, 2005, 18, 5.	1.9	43
407	Ontogeny of the erythroid/HepG2-type glucose transporter (GLUT-1) in the rat nervous system. Developmental Brain Research, 1993, 72, 41-49.	2.1	42
408	Melatonin acts as antioxidant and pro-oxidant in an organotypic slice culture model of Alzheimer's disease. NeuroReport, 2001, 12, 1277-1280.	0.6	42
409	Alzheimer?s disease: the impact of age-related changes in reproductive hormones. Cellular and Molecular Life Sciences, 2005, 62, 293-298.	2.4	42
410	Malignant glioma progression and nitric oxide. Neurochemistry International, 2006, 49, 764-768.	1.9	42
411	Basic fibroblast growth factor binds to filamentous inclusions of neurodegenerative diseases. Brain Research, 1992, 579, 350-352.	1.1	41
412	Apoptotic promoters and inhibitors in Alzheimer's disease: Who wins out?. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2003, 27, 251-254.	2.5	41
413	Therapeutic options in Alzheimer's disease. Expert Review of Neurotherapeutics, 2006, 6, 897-910.	1.4	41
414	Neuropathology and treatment of Alzheimer disease: did we lose the forest for the trees?. Expert Review of Neurotherapeutics, 2007, 7, 473-485.	1.4	41

#	Article	IF	CITATIONS
415	Imaging the Alzheimer Brain. Journal of Alzheimer's Disease, 2011, 26, 1-27.	1.2	41
416	Antimicrobial peptide β-defensin-1 expression is upregulated in Alzheimer's brain. Journal of Neuroinflammation, 2013, 10, 127.	3.1	41
417	Ca2+-stimulated production of H2O2 from naphthoquinone oxidation in Arbacia eggs. Experimental Cell Research, 1981, 134, 65-72.	1.2	40
418	Fertilization stimulates lipid peroxidation in the sea urchin egg. Developmental Biology, 1985, 107, 58-65.	0.9	40
419	Amyloid-?: A vascular sealant that protects against hemorrhage?. Journal of Neuroscience Research, 2002, 70, 356-356.	1.3	40
420	Regulation of glycogen synthase kinase-3beta by products of lipid peroxidation in human neuroblastoma cells. Journal of Neurochemistry, 2004, 89, 1224-1232.	2.1	40
421	LRRK2 in Parkinson's disease and dementia with Lewy bodies. Molecular Neurodegeneration, 2006, 1, 17.	4.4	40
422	Structures and free energy landscapes of aqueous zinc(II)-bound amyloid-β(1–40) and zinc(II)-bound amyloid-β(1–42) with dynamics. Journal of Biological Inorganic Chemistry, 2012, 17, 927-938.	1.1	40
423	Retinoic acid isomers protect hippocampal neurons from amyloid-Î ² induced neurodegeneration. Neurotoxicity Research, 2005, 7, 243-250.	1.3	39
424	Compensatory responses induced by oxidative stress in Alzheimer disease. Biological Research, 2006, 39, 7-13.	1.5	39
425	The Contribution of Luteinizing Hormone to Alzheimer Disease Pathogenesis. Clinical Medicine and Research, 2007, 5, 177-183.	0.4	39
426	Mitofusin 2 Regulates Axonal Transport of Calpastatin to Prevent Neuromuscular Synaptic Elimination in Skeletal Muscles. Cell Metabolism, 2018, 28, 400-414.e8.	7.2	39
427	Role of antioxidants and a nutrient rich diet in Alzheimer's disease. Open Biology, 2020, 10, 200084.	1.5	39
428	Indoles as essential mediators in the gut-brain axis. Their role in Alzheimer's disease. Neurobiology of Disease, 2021, 156, 105403.	2.1	39
429	Cytochalasin B blocks sperm incorporation but allows activation of the sea urchin egg. Experimental Cell Research, 1980, 126, 333-342.	1.2	38
430	Role of cytokeratin intermediate filaments in transhepatic transport and canalicular secretion. Hepatology, 1990, 11, 435-448.	3.6	38
431	Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1740, 472-480.	1.8	38
432	LC-MS display of the total modified amino acids in cataract lens proteins and in lens proteins glycated by ascorbic acid in vitro. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 533-543.	1.8	38

#	Article	IF	CITATIONS
433	Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radical Biology and Medicine, 2012, 52, 699-704.	1.3	38
434	The Structures of the E22Δ Mutant-Type Amyloid-Î ² Alloforms and the Impact of E22Δ Mutation on the Structures of the Wild-Type Amyloid-Î ² Alloforms. ACS Chemical Neuroscience, 2013, 4, 310-320.	1.7	38
435	Cognitive decline due to excess synaptic Zn2+ signaling in the hippocampus. Frontiers in Aging Neuroscience, 2014, 6, 26.	1.7	38
436	A Novel Endogenous Indole Protects Rodent Mitochondria and Extends Rotifer Lifespan. PLoS ONE, 2010, 5, e10206.	1.1	38
437	Do Neurons Have a Choice in Death?. American Journal of Pathology, 2001, 158, 1-2.	1.9	37
438	Steroidogenic acute regulatory protein (StAR): evidence of gonadotropin-induced steroidogenesis in Alzheimer disease. Molecular Neurodegeneration, 2006, 1, 14.	4.4	37
439	The effect of mGluR2 activation on signal transduction pathways and neuronal cell survival. Brain Research, 2009, 1249, 244-250.	1.1	37
440	Do <i>β</i> -Defensins and Other Antimicrobial Peptides Play a Role in Neuroimmune Function and Neurodegeneration?. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	37
441	The Role of the Microbiota–Gut–Brain Axis and Antibiotics in ALS and Neurodegenerative Diseases. Microorganisms, 2020, 8, 784.	1.6	37
442	Characterization of a Ca2+-stimulated lipid peroxidizing system in the sea urchin egg. Developmental Biology, 1985, 107, 47-57.	0.9	36
443	What are the facts and artifacts of the pathogenensis and etiology of Alzheimer disease?. Journal of Chemical Neuroanatomy, 1998, 16, 35-41.	1.0	36
444	Nucleic acid oxidative damage in Alzheimer's disease—explained by the hepcidin-ferroportin neuronal iron overload hypothesis?. Journal of Trace Elements in Medicine and Biology, 2016, 38, 1-9.	1.5	36
445	The role of metabotropic glutamate receptors in Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2004, 64, 89-98.	0.4	36
446	MAPKs are differentially modulated in arctic ground squirrels during hibernation. Journal of Neuroscience Research, 2005, 80, 862-868.	1.3	35
447	Sublethal RNA Oxidation as a Mechanism for Neurodegenerative Disease. International Journal of Molecular Sciences, 2008, 9, 789-806.	1.8	35
448	Nanoparticle Delivery of Transition-Metal Chelators to the Brain: Oxidative Stress will Never See it Coming!. CNS and Neurological Disorders - Drug Targets, 2012, 11, 81-85.	0.8	35
449	Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease. Molecular Psychiatry, 2016, 21, 1263-1271.	4.1	35
450	Identification of Inhibitors of CD36-Amyloid Beta Binding as Potential Agents for Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 1232-1241.	1.7	35

#	Article	IF	CITATIONS
451	Toll-like receptors in Alzheimer's disease. Journal of Neuroimmunology, 2020, 348, 577362.	1.1	35
452	Coexistence of cytokeratin, vimentin and neurofilament protein in human choroid plexus. Virchows Archiv A, Pathological Anatomy and Histopathology, 1987, 410, 173-177.	1.4	34
453	Differential Regulation of Glutamate Receptors in Alzheimer's Disease. NeuroSignals, 2002, 11, 282-292.	0.5	34
454	Heme Catabolism and Heme Oxygenase in Neurodegenerative Disease. Antioxidants and Redox Signaling, 2004, 6, 888-894.	2.5	34
455	The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotoxicity Research, 2007, 12, 269-274.	1.3	34
456	Ectopic localization of FOXO3a protein in Lewy bodies in Lewy body dementia and Parkinson's disease. Molecular Neurodegeneration, 2009, 4, 32.	4.4	34
457	Getting the iron out: Phlebotomy for Alzheimer's disease?. Medical Hypotheses, 2009, 72, 504-509.	0.8	34
458	Chronic Effects of Mild Neurotrauma. Journal of Neuropathology and Experimental Neurology, 2015, 74, 493-499.	0.9	34
459	Direction-sensitive dark matter search with gaseous tracking detector NEWAGE-0.3b'. Progress of Theoretical and Experimental Physics, 2015, 2015, 43F01-0.	1.8	34
460	Selenoprotein S Reduces Endoplasmic Reticulum Stress-Induced Phosphorylation of Tau: Potential Role in Selenate Mitigation of Tau Pathology. Journal of Alzheimer's Disease, 2016, 55, 749-762.	1.2	34
461	Metal Chelators Coupled with Nanoparticles as Potential Therapeutic Agents for Alzheimer's Disease. Journal of Nanoneuroscience, 2009, 1, 42-55.	0.5	34
462	Atherosclerotic Lesions Are Associated with Increased Immunoreactivity for Inducible Nitric Oxide Synthase and Endothelin-1 in Thoracic Aortic Intimal Cells of Hyperlipidemic Watanabe Rabbits. Experimental and Molecular Pathology, 2001, 71, 40-54.	0.9	33
463	Loss of awareness of hyposmia is associated with mild cognitive impairment in Parkinson's disease. Parkinsonism and Related Disorders, 2016, 22, 74-79.	1.1	33
464	Thermodynamics of Amyloid-β Fibril Elongation: Atomistic Details of the Transition State. ACS Chemical Neuroscience, 2018, 9, 783-789.	1.7	33
465	Amyloid β-Mediated Zn2+ Influx into Dentate Granule Cells Transiently Induces a Short-Term Cognitive Deficit. PLoS ONE, 2014, 9, e115923.	1.1	33
466	Beyond Estrogen: Targeting Gonadotropin Hormones in the Treatment of Alzheimers Disease. CNS and Neurological Disorders, 2004, 3, 281-285.	4.3	33
467	Striation is the characteristic neuritic abnormality in Alzheimer disease. Brain Research, 1998, 813, 329-333.	1.1	32
468	The Cell Cycle Regulator Phosphorylated Retinoblastoma Protein Is Associated With Tau Pathology in Several Tauopathies. Journal of Neuropathology and Experimental Neurology, 2011, 70, 578-587.	0.9	32

#	Article	IF	CITATIONS
469	Anthocyanins: Multi-Target Agents for Prevention and Therapy of Chronic Diseases. Current Pharmaceutical Design, 2018, 23, 6321-6346.	0.9	32
470	Serial reconstruction of β-protein amyloid plaques: relationship to microvessels and size distribution. Brain Research, 1992, 592, 278-282.	1.1	31
471	Melatonin reduces interleukin secretion in amyloid-β stressed mouse brain slices. Chemico-Biological Interactions, 2001, 134, 101-107.	1.7	31
472	Oxidative stress and predominant $\hat{Al^2}$ 42(43) deposition in myopathies with rimmed vacuoles. Acta Neuropathologica, 2003, 105, 581-585.	3.9	31
473	Dissociated amyloid-β antibody levels as a serum biomarker for the progression of Alzheimer's disease: A population-based study. Experimental Gerontology, 2010, 45, 47-52.	1.2	31
474	Immunoaffinity demonstration that paired helical filaments of Alzheimer disease share epitopes with neurofilaments, MAP2 and tau. Brain Research, 1989, 484, 150-156.	1.1	30
475	Role of Oxidative Stress in Frontotemporal Dementia. Dementia and Geriatric Cognitive Disorders, 1999, 10, 85-87.	0.7	30
476	Mitogen- and stress-activated protein kinase 1: Convergence of the ERK and p38 pathways in Alzheimer's disease. Journal of Neuroscience Research, 2005, 79, 554-560.	1.3	30
477	Emerging evidence for the neuroprotective role of α-synuclein. Experimental Neurology, 2006, 200, 1-7.	2.0	30
478	Elevation of β-Amyloid 1-42 Autoantibodies in the Blood of Amnestic Patients With Mild Cognitive Impairment. Archives of Neurology, 2010, 67, 867-72.	4.9	30
479	Cholesterol homeostasis markers are localized to mouse hippocampal pyramidal and granule layers. Hippocampus, 2010, 20, 902-905.	0.9	30
480	The Mitochondrial Dynamics of Alzheimers Disease and Parkinsons Disease Offer Important Opportunities for Therapeutic Intervention. Current Pharmaceutical Design, 2011, 17, 3374-3380.	0.9	30
481	Dementia Pugilistica Revisited. Journal of Alzheimer's Disease, 2017, 60, 1209-1221.	1.2	30
482	MMR Vaccination: A Potential Strategy to Reduce Severity and Mortality of COVID-19 Illness. American Journal of Medicine, 2021, 134, 153-155.	0.6	30
483	Tryptamine Induces Axonopathy and Mitochondriopathy Mimicking Neurodegenerative Diseases via Tryptophanyl-tRNA Deficiency. Current Alzheimer Research, 2013, 10, 987-1004.	0.7	30
484	Labeling of cerebral amyloid beta deposits in vivo using intranasal basic fibroblast growth factor and serum amyloid P component in mice. Journal of Nuclear Medicine, 2002, 43, 1044-51.	2.8	30
485	α1-Trypsin Immunoreactivity in Alzheimer Disease. Biochemical and Biophysical Research Communications, 1993, 193, 579-584.	1.0	29
486	Early contribution of oxidative glycation in Alzheimer disease. Neuroscience Letters, 1996, 217, 210-211.	1.0	29

#	Article	IF	CITATIONS
487	Will antioxidants fulfill their expectations for the treatment of Alzheimer disease?. Mechanisms of Ageing and Development, 2000, 116, 169-179.	2.2	29
488	Erythrocyte, plasma, and serum antioxidant activities in untreated toxic multinodular goiter patients. Free Radical Biology and Medicine, 2001, 30, 665-670.	1.3	29
489	Gender Differences in Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2005, 19, 95-99.	0.6	29
490	Leucine-Rich Repeat Kinase 2 Colocalizes with α-Synuclein in Parkinson's Disease, but Not Tau-Containing Deposits in Tauopathies. Neurodegenerative Diseases, 2008, 5, 222-224.	0.8	29
491	Mitochondrial preconditioning: a potential neuroprotective strategy. Frontiers in Aging Neuroscience, 2010, 2, .	1.7	29
492	Rab10 Phosphorylation is a Prominent Pathological Feature in Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 63, 157-165.	1.2	29
493	Status and future directions of clinical trials in Alzheimer's disease. International Review of Neurobiology, 2020, 154, 3-50.	0.9	29
494	Oxidative Stress and its Implications for Future Treatments and Management of Alzheimer Disease. International Journal of Biomedical Science, 2010, 6, 225-227.	0.5	29
495	Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions. Brain Research, 1987, 420, 233-242.	1.1	28
496	Hypoperfusion, Mitochondria Failure, Oxidative Stress, and Alzheimer Disease. Journal of Biomedicine and Biotechnology, 2003, 2003, 162-163.	3.0	28
497	Is nitric oxide a key target in the pathogenesis of brain lesions during the development of Alzheimer's disease?. Neurological Research, 2004, 26, 547-553.	0.6	28
498	Neurotoxic dopamine quinone facilitates the assembly of tau into fibrillar polymers. Molecular and Cellular Biochemistry, 2005, 278, 203-212.	1.4	28
499	New Insights into the Mechanisms of Mitochondrial Preconditioning-Triggered Neuroprotection. Current Pharmaceutical Design, 2011, 17, 3381-3389.	0.9	28
500	Assembly In Vitro of Tau Protein and its Implications in Alzheimers Disease. Current Alzheimer Research, 2004, 1, 97-101.	0.7	27
501	Apolipoprotein E4 Prevents Growth of Malaria at the Intraerythrocyte Stage: Implications For Diff erences in Racial Susceptibility to Alzheimer's Disease. Journal of Health Care for the Poor and Underserved, 2013, 24, 70-78.	0.4	27
502	Betaâ€amyloid 1â€42 monomers, but not oligomers, produce <scp>PHF</scp> â€like conformation of Tau protein. Aging Cell, 2016, 15, 914-923.	3.0	27
503	Neuropsychiatric genetics in developing countries: Current challenges. World Journal of Psychiatry, 2014, 4, 69.	1.3	27
504	Clusterin up-regulation following sub-lethal oxidative stress and lipid peroxidation in human neuroblastoma cells. Neurobiology of Aging, 2006, 27, 1588-1594.	1.5	26

#	Article	IF	CITATIONS
505	Frontiers in Alzheimer's disease therapeutics. Therapeutic Advances in Chronic Disease, 2011, 2, 9-23.	1.1	26
506	Novel therapeutics for Alzheimer's disease: an update. Current Opinion in Drug Discovery & Development, 2010, 13, 235-46.	1.9	26
507	Amyloidosis, advanced glycation end products and Alzheimer disease. NeuroReport, 1995, 6, 1595.	0.6	25
508	Alteration of Phospholipase Câ€î´ Protein Level and Specific Activity in Alzheimer's Disease. Journal of Neurochemistry, 1995, 64, 2629-2634.	2.1	25
509	The Estrogen Myth. Drugs in R and D, 2006, 7, 187-193.	1.1	25
510	The Research Centers in Minority Institutions (RCMI) Translational Research Network: Building and Sustaining Capacity for Multi-Site Basic Biomedical, Clinical and Behavioral Research. Ethnicity and Disease, 2019, 29, 135-144.	1.0	25
511	The Transformative Possibilities of the Microbiota and Mycobiota for Health, Disease, Aging, and Technological Innovation Biomedicines, 2019, 7, 24.	1.4	25
512	Tropomyosin distinguishes Lewy bodies of Parkinson disease from other neurofibrillary pathology. Brain Research, 1991, 541, 347-349.	1.1	24
513	Will Preventing Protein Aggregates Live Up to Its Promise as Prophylaxis Against Neurodegenerative Diseases?. Brain Pathology, 2003, 13, 630-638.	2.1	24
514	Antibodies to Potato Virus Y Bind the Amyloid \hat{l}^2 Peptide. Journal of Biological Chemistry, 2008, 283, 22550-22556.	1.6	24
515	A Novel Perspective on Tau in Alzheimers Disease. Current Alzheimer Research, 2011, 8, 639-642.	0.7	24
516	Applicability of in vivo staging of regional amyloid burden in a cognitively normal cohort with subjective memory complaints: the INSIGHT-preAD study. Alzheimer's Research and Therapy, 2019, 11, 15.	3.0	24
517	Retinoblastoma protein phosphorylation at multiple sites is associated with neurofibrillary pathology in Alzheimer disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 134-46.	0.5	24
518	Cerebral Hemorrhage and Amyloid- <font 1014a-1014.<="" 2003,="" 299,="" face="." science,="" td=""><td>6.0</td><td>23</td>	6.0	23
519	Indices of Metabolic Dysfunction and Oxidative Stress. Neurochemical Research, 2007, 32, 717-722.	1.6	23
520	A brief guide to the science and art of writing manuscripts in biomedicine. Journal of Translational Medicine, 2020, 18, 425.	1.8	23
521	Mitochondrial Abnormalities and Oxidative Imbalance in Neurodegenerative Disease. Science of Aging Knowledge Environment: SAGE KE, 2002, 2002, 16pe-16.	0.9	23
522	Decreased constitutive nitric oxide synthase, but increased inducible nitric oxide synthase and endothelin-1 immunoreactivity in aortic endothelial cells of Donryu rats on a cholesterol-enriched diet. The Anatomical Record, 2000, 260, 16-25.	2.3	22

#	Article	IF	CITATIONS
523	Metals and oxidative homeostasis in Alzheimer's disease. Drug Development Research, 2002, 56, 293-299.	1.4	22
524	Call for Elan to publish Alzheimer's trial details. Nature, 2002, 416, 677-677.	13.7	22
525	βâ€Amyloid 1â€42 induces physiological transcriptional regulation of BACE1. Journal of Neurochemistry, 2012, 122, 1023-1031.	2.1	22
526	Modification of Amyloid-β1-42 Fibril Structure by Methionine-35 Oxidation. Journal of Alzheimer's Disease, 2013, 37, 9-18.	1.2	22
527	Amyloid β peptides modify the expression of antioxidant repair enzymes and a potassium channel in the septohippocampal system. Neurobiology of Aging, 2013, 34, 2071-2076.	1.5	22
528	A Low-Molecular-Weight Ferroxidase Is Increased in the CSF of sCJD Cases: CSF Ferroxidase and Transferrin as Diagnostic Biomarkers for sCJD. Antioxidants and Redox Signaling, 2013, 19, 1662-1675.	2.5	22
529	Laser-Induced In-Source Decay Applied to the Determination of Amyloid-Beta in Alzheimer's Brains. ACS Chemical Neuroscience, 2016, 7, 261-268.	1.7	22
530	Differences in structure and function between human and murine tau. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2024-2030.	1.8	22
531	Extracellular neurofibrillary tangles reflect neuronal loss and provide further evidence of extensive protein cross-linking in Alzheimer disease. Acta Neuropathologica, 1995, 89, 291-295.	3.9	22
532	Oxidative Stress Induces Senescence in Cultured RPE Cells. The Open Neurology Journal, 2016, 10, 83-87.	0.4	22
533	Abnormal accumulation of phospholipase C- \hat{l}' in filamentous inclusions of human neurodegenerative diseases. Neuroscience Letters, 1993, 162, 183-186.	1.0	21
534	Is amyloid β-protein glycated in Alzheimer's disease?. NeuroReport, 1997, 8, 907-909.	0.6	21
535	Possible involvement of Wiskott–Aldrich syndrome protein family in aberrant neuronal sprouting in Alzheimer's disease. Neuroscience Letters, 2003, 346, 149-152.	1.0	21
536	What is aging? What is its role in Alzheimer's disease? What can we do about it?. Journal of Alzheimer's Disease, 2005, 7, 247-253.	1.2	21
537	William R. Markesbery, M.D.: A Tribute. Journal of Alzheimer's Disease, 2010, 20, 1-1.	1.2	21
538	Melanin production through novel processing of proopiomelanocortin in the extracellular compartment of the auricular skin of C57BL/6 mice after UV-irradiation. Scientific Reports, 2015, 5, 14579.	1.6	21
539	The role of nitric oxide in the pathogenesis of brain lesions during the development of Alzheimer's disease. In Vivo, 2004, 18, 325-33.	0.6	21
540	Characterization of the association of phospholipase C-δ with Alzheimer neurofibrillary tangles. Brain Research, 1995, 669, 217-224.	1.1	20

#	Article	IF	CITATIONS
541	Amyloid-β Vaccination: Testing the Amyloid Hypothesis?. American Journal of Pathology, 2006, 169, 738-739.	1.9	20
542	The Cell Cycle and Hormonal Fluxes in Alzheimer Disease: A Novel Therapeutic Target. Current Pharmaceutical Design, 2006, 12, 691-697.	0.9	20
543	Intrahippocampal Amyloid-β (1-40) Injections Injure Medial Septal Neurons in Rats. Current Alzheimer Research, 2011, 8, 832-840.	0.7	20
544	Single-channel permeability and glycerol affinity of human aquaglyceroporin AQP3. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 768-775.	1.4	20
545	Sources and mechanisms of cytoplasmic oxidative damage in Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2004, 64, 81-7.	0.4	20
546	Dementia with argyrophilic grains. Annals of Neurology, 1991, 30, 853-853.	2.8	19
547	Serum amyloid P is not present in amyloid β deposits of a transgenic animal modela. NeuroReport, 1999, 10, 3229-3232.	0.6	19
548	Evidence for a Novel Heme-Binding Protein, HasAh, in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 137-142.	2.5	19
549	Tipping the Apoptotic Balance in Alzheimer's Disease: The Abortosis Concept. Cell Biochemistry and Biophysics, 2003, 39, 249-256.	0.9	19
550	The (un)balance between metabolic and oxidative abnormalities and cellular compensatory responses in Alzheimer disease. Mechanisms of Ageing and Development, 2006, 127, 501-506.	2.2	19
551	Evidence for the Role of Luteinizing Hormone in Alzheimer Disease. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2007, 7, 300-303.	0.6	19
552	Development of iron chelator–nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Progress in Brain Research, 2009, 180, 97-108.	0.9	19
553	Upregulation of Presenilin 1 in Brains of Sporadic, Late-Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2010, 22, 771-775.	1.2	19
554	Mathematical modeling of microtubule dynamics: Insights into physiology and disease. Progress in Neurobiology, 2010, 92, 478-483.	2.8	19
555	DNA Damage in Alzheimer Disease Lymphocytes and Its Relation to Premature Centromere Division. Neurodegenerative Diseases, 2013, 12, 156-163.	0.8	19
556	Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse. Journal of Alzheimer's Disease, 2016, 52, 243-269.	1.2	19
557	Current needs for human and medical genomics research infrastructure in low and middle income countries: TableÂ1. Journal of Medical Genetics, 2016, 53, 438-440.	1.5	19
558	The Microbiota–Gut–Brain Axis–Heart Shunt Part II: Prosaic Foods and the Brain–Heart Connection in Alzheimer Disease. Microorganisms, 2020, 8, 493.	1.6	19

#	Article	IF	CITATIONS
559	Making the Case for Accelerated Withdrawal of Aducanumab. Journal of Alzheimer's Disease, 2022, 87, 1003-1007.	1.2	19
560	Genetic evidence for oxidative stress in Alzheimer's disease. NeuroReport, 1999, 10, 1355-1357.	0.6	18
561	Staying Connected. American Journal of Pathology, 2004, 165, 1461-1464.	1.9	18
562	Alzheimer's disease: an intracellular movement disorder?. Trends in Molecular Medicine, 2005, 11, 391-393.	3.5	18
563	Conadotropins: A cohesive gender-based etiology of Alzheimer disease. Molecular and Cellular Endocrinology, 2007, 260-262, 271-275.	1.6	18
564	Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer's disease. Neuroscience Letters, 2009, 460, 180-184.	1.0	18
565	Widespread distribution of reticulon-3 in various neurodegenerative diseases. Neuropathology, 2010, 30, 574-579.	0.7	18
566	Is interaction of amyloid β-peptides with metals involved in cognitive activity?. Metallomics, 2015, 7, 1205-1212.	1.0	18
567	Expression Profiling of Cytokine, Cholinergic Markers, and Amyloid-β Deposition in the APPSWE/PS1dE9 Mouse Model of Alzheimer's Disease Pathology. Journal of Alzheimer's Disease, 2018, 62, 467-476.	1.2	18
568	Association of plasma YKL-40 with brain amyloid-Î ² levels, memory performance, and sex in subjective memory complainers. Neurobiology of Aging, 2020, 96, 22-32.	1.5	18
569	Induction of NADPH cytochrome P450 reductase by the Alzheimer β-protein. Amyloid as a â€~foreign body'. Journal of Neurochemistry, 2001, 78, 121-128.	2.1	17
570	4â€Hydroxynonenal contributes to NGF withdrawalâ€induced neuronal apoptosis. Journal of Neurochemistry, 2003, 85, 999-1005.	2.1	17
571	Insights into cerebrovascular complications and Alzheimer disease through the selective loss of GRK2 regulation. Journal of Cellular and Molecular Medicine, 2009, 13, 853-865.	1.6	17
572	Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration. Nutrients, 2018, 10, 410.	1.7	17
573	Current research in biotechnology: Exploring the biotech forefront. Current Research in Biotechnology, 2019, 1, 34-40.	1.9	17
574	TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165580.	1.8	17
575	Alzheimer's Disease Patients in the Crosshairs of COVID-19. Journal of Alzheimer's Disease, 2020, 76, 1-1.	1.2	17
576	Estrogen Replacement and Risk of Alzheimer DiseaseEstrogen Replacement and Risk of Alzheimer Disease. JAMA - Journal of the American Medical Association, 2003, 289, 1100.	3.8	16

#	Article	IF	CITATIONS
577	Therapeutic potential of oxidant mechanisms in Alzheimer's disease. Expert Review of Neurotherapeutics, 2004, 4, 995-1004.	1.4	16
578	Alzheimers Disease and Oxidative Stress: The Old Problem Remains Unsolved. Current Medicinal Chemistry - Central Nervous System Agents, 2005, 5, 51-62.	0.6	16
579	Glycogen Synthase Kinase 3: A Point of Integration in Alzheimer's Disease and a Therapeutic Target?. International Journal of Alzheimer's Disease, 2012, 2012, 1-4.	1.1	16
580	Accumulation of Intraneuronal Amyloid-β is Common in Normal Brain. Current Alzheimer Research, 2014, 11, 317-324.	0.7	16
581	Tau, Amyloid Beta and Deep Brain Stimulation: Aiming to Restore Cognitive Deficit in Alzheimer's Disease. Current Alzheimer Research, 2016, 14, 40-46.	0.7	16
582	Demonstration of a novel neurofilament associated antigen with the neurofibrillary pathology of Alzheimer and related diseases. Brain Research, 1991, 558, 43-52.	1.1	15
583	Mitochondrial abnormalities: A primary basis for oxidative damage in Alzheimer's disease. Drug Development Research, 1999, 46, 26-33.	1.4	15
584	The "Down's―Side of Mitochondria. Developmental Cell, 2002, 2, 255-256.	3.1	15
585	Drug Therapy in Alzheimer's Disease. New England Journal of Medicine, 2004, 351, 1911-1913.	13.9	15
586	Heme Deficiency in Alzheimer's Disease: A Possible Connection to Porphyria. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-5.	3.0	15
587	Mitochondrial Drugs for Alzheimer Disease. Pharmaceuticals, 2009, 2, 287-298.	1.7	15
588	Analysis of post-translational modifications in Alzheimer's disease by mass spectrometry. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2040-2047.	1.8	15
589	Gut–microbiota–microglia–brain interactions in Alzheimer's disease: knowledge-based, multi-dimensional characterization. Alzheimer's Research and Therapy, 2021, 13, 177.	3.0	15
590	Alterations of low molecular weight acid phosphatase protein level in Alzheimer's disease. Brain Research, 1995, 699, 125-129.	1.1	14
591	Trypsin interaction with the senile plaques of Alzheimer disease is mediated by β-protein precursor. Molecular and Chemical Neuropathology, 1996, 27, 145-154.	1.0	14
592	Neuroinflammatory Responses in the Alzheimer's Disease Brain Promote the Oxidative Post-translational Modification of Amyloid Deposits. , 0, , 341-361.		14
593	Ferric Cycle Activity and Alzheimer Disease. Current Neurovascular Research, 2005, 2, 261-267.	0.4	14
594	Tau modifiers as therapeutic targets for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 211-215.	1.8	14

#	Article	IF	CITATIONS
595	Concealment of epitope by reduction and alkylation in prion protein. Biochemical and Biophysical Research Communications, 2005, 326, 652-659.	1.0	14
596	The Key Role of Oxidative Stress in Alzheimer's Disease. , 2007, , 267-281.		14
597	Cerebrovascular and mitochondrial abnormalities in Alzheimer's disease: a brief overview. Journal of Neural Transmission, 2016, 123, 107-111.	1.4	14
598	Optogenetics: implications for Alzheimer's disease research and therapy. Molecular Brain, 2022, 15, 20.	1.3	14
599	Targeting Gonadotropins: An Alternative Option for Alzheimer Disease Treatment. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-8.	3.0	13
600	Treating the Lesions, Not the Disease. American Journal of Pathology, 2007, 170, 1457-1459.	1.9	13
601	Increased Expression of p130 in Alzheimer Disease. Neurochemical Research, 2007, 32, 639-644.	1.6	13
602	The essential role of ERK in 4â€oxoâ€2â€nonenalâ€mediated cytotoxicity in SHâ€SY5Y human neuroblastoma cells. Journal of Neurochemistry, 2009, 108, 1434-1441.	2.1	13
603	Divalent metal transporter, iron, and Parkinson's disease: A pathological relationship. Cell Research, 2010, 20, 397-399.	5.7	13
604	Drug Discovery for Neurodegenerative Diseases: Challenges and Novel Biochemical Targets. Journal of Alzheimer's Disease, 2011, 24, 1-2.	1.2	13
605	CD3 in Lewy pathology: does the abnormal recall of neurodevelopmental processes underlie Parkinson's disease. Journal of Neural Transmission, 2011, 118, 23-26.	1.4	13
606	Molecular neuropathogenesis of Alzheimer's disease: an interaction model stressing the central role of oxidative stress. Future Neurology, 2012, 7, 287-305.	0.9	13
607	Neurofilaments are the major neuronal target of hydroxynonenal-mediated protein cross-links. Free Radical Research, 2013, 47, 507-510.	1.5	13
608	Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model. International Journal of Molecular Sciences, 2016, 17, 1149.	1.8	13
609	Elongation affinity, activation barrier, and stability of AÎ ² 42 oligomers/fibrils in physiological saline. Biochemical and Biophysical Research Communications, 2017, 487, 444-449.	1.0	13
610	Gibbs Free-Energy Gradient along the Path of Glucose Transport through Human Glucose Transporter 3. ACS Chemical Neuroscience, 2018, 9, 2815-2823.	1.7	13
611	Neuropsychiatric Disturbances and Diabetes Mellitus: The Role of Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-2.	1.9	13
612	No Evidence of Increased Chronic Traumatic Encephalopathy Pathology or Neurodegenerative Proteinopathy in Former Military Service Members: A Preliminary Study. Journal of Alzheimer's Disease, 2019, 67, 1277-1289.	1.2	13

#	Article	IF	CITATIONS
613	Biochemistry of Neurodegeneration. Science, 2001, 291, 595c-597.	6.0	13
614	Tau phosphorylation and assembly. Acta Neurobiologiae Experimentalis, 2004, 64, 33-9.	0.4	13
615	Histochemical and Immunocytochemical Approaches to the Study of Oxidative Stress. Clinical Chemistry and Laboratory Medicine, 2000, 38, 93-7.	1.4	12
616	Differential Network Analyses of Alzheimer's Disease Identify Early Events in Alzheimer's Disease Pathology. International Journal of Alzheimer's Disease, 2014, 2014, 1-18.	1.1	12
617	Insights into the structural patterns of the antileishmanial activity of bi- and tricyclic N-heterocycles. Organic and Biomolecular Chemistry, 2016, 14, 7053-7060.	1.5	12
618	Characterization of Proteins Present in Isolated Senile Plaques from Alzheimer's Diseased Brains by MALDI-TOF MS with MS/MS. ACS Chemical Neuroscience, 2018, 9, 708-714.	1.7	12
619	The Interrelation of Neurological and Psychological Symptoms of COVID-19: Risks and Remedies. Journal of Clinical Medicine, 2020, 9, 2624.	1.0	12
620	Enhanced Phosphorylation of Bax and Its Translocation into Mitochondria in the Brains of Individuals Affiliated with Alzheimer's Disease. The Open Neurology Journal, 2017, 11, 48-58.	0.4	12
621	A Second Look into the Oxidant Mechanisms in Alzheimers Disease. Current Neurovascular Research, 2005, 2, 179-184.	0.4	11
622	Cerebrotendinous xanthomatosis: case report with evidence of oxidative stress. Redox Report, 2007, 12, 119-124.	1.4	11
623	Modeling cholesterol metabolism by gene expression profiling in the hippocampus. Molecular BioSystems, 2011, 7, 1891.	2.9	11
624	An Inducible Alpha-Synuclein Expressing Neuronal Cell Line Model for Parkinson's Disease1. Journal of Alzheimer's Disease, 2018, 66, 453-460.	1.2	11
625	The sterol regulatory elementâ€binding protein 2 is dysregulated by tau alterations in Alzheimer disease. Brain Pathology, 2019, 29, 530-543.	2.1	11
626	Neuropathology in Alzheimer's Disease: Awaking from a Hundred-Year-Old Dream. Science of Aging Knowledge Environment: SAGE KE, 2006, 2006, pe10-pe10.	0.9	11
627	Copper Induces Apoptosis of Neuroblastoma Cells Via Post-translational Regulation of the Expression of Bcl-2-family Proteins and the tx Mouse is a Better Model of Hepatic than Brain Cu Toxicity. International Journal of Clinical and Experimental Medicine, 2008, 1, 76-88.	1.3	11
628	Now is the Time to Improve Cognitive Screening and Assessment for Clinical and Research Advancement. Journal of Alzheimer's Disease, 2022, 87, 305-315.	1.2	11
629	RNA Oxidation in Alzheimer and Parkinson Diseases. Rejuvenation Research, 1999, 2, 227-230.	0.2	10
630	Menopause, Estrogen, and Gonadotropins in Alzheimer's Disease. Advances in Clinical Chemistry, 2008, 45, 139-153.	1.8	10

#	Article	IF	CITATIONS
631	Affinity and path of binding xylopyranose unto E.Âcoli xylose permease. Biochemical and Biophysical Research Communications, 2017, 494, 202-206.	1.0	10
632	Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders. Molecular Neurobiology, 2019, 56, 307-318.	1.9	10
633	Analysis of the Relationship Between Metalloprotease-9 and Tau Protein in Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 76, 553-569.	1.2	10
634	Oxidative Stress Signaling in Blast TBI-Induced Tau Phosphorylation. Antioxidants, 2021, 10, 955.	2.2	10
635	Alzheimer Disease Pathology in Middle Age Reveals a Spatial-Temporal Disconnect Between Amyloid-β and Phosphorylated Tau. The Open Neurology Journal, 2014, 8, 22-26.	0.4	10
636	Gonadotropins and Alzheimer's disease: the link between estrogen replacement therapy and neuroprotection. Acta Neurobiologiae Experimentalis, 2004, 64, 113-8.	0.4	10
637	Tau-reactive neurofibrillary tangles in cerebellar cortex from patients with Alzheimer's disease. Neuroscience Letters, 1989, 103, 259-262.	1.0	9
638	Ill-fated amyloid-? vaccine. Journal of Neuroscience Research, 2002, 69, 285-285.	1.3	9
639	Stem cell niches as clinical targets: the future of anti-ischemic therapy?. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 590-591.	3.3	9
640	Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets. Pharmaceuticals, 2009, 2, 250-286.	1.7	9
641	Editorial (A New Era for Medicinal Chemistry). Mini-Reviews in Medicinal Chemistry, 2012, 12, 1-1.	1.1	9
642	Global warming and neurodegenerative disorders: speculations on their linkage. BioImpacts, 2014, 4, 167-170.	0.7	9
643	Entropy of corneal nerve fibers distribution observed by laser scanning confocal microscopy: A noninvasive quantitative method to characterize the corneal innervation in <scp>S</scp> jogren's syndrome patients. Microscopy Research and Technique, 2015, 78, 1069-1074.	1.2	9
644	Regulation of extracellular Zn ²⁺ homeostasis in the hippocampus as a therapeutic target for Alzheimer's disease. Expert Opinion on Therapeutic Targets, 2015, 19, 1051-1058.	1.5	9
645	TMEM230 Accumulation in Granulovacuolar Degeneration Bodies and Dystrophic Neurites of Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1027-1033.	1.2	9
646	Phospho-Tau Protein Expression in the Cell Cycle of SH-SY5Y Neuroblastoma Cells: A Morphological Study. Journal of Alzheimer's Disease, 2019, 71, 631-645.	1.2	9
647	Gait Disorders in Alzheimer's Disease and Other Dementias: There is Something in the Way You Walk. Journal of Alzheimer's Disease, 2019, 71, S1-S4.	1.2	9
648	Inhibition of Calpain Protects Against Tauopathy in Transgenic P301S Tau Mice. Journal of Alzheimer's Disease, 2019, 69, 1077-1087.	1.2	9

#	Article	IF	CITATIONS
649	Challenges and Strategies of Successful Mentoring: The Perspective of LEADS Scholars and Mentors from Minority Serving Institutions. International Journal of Environmental Research and Public Health, 2021, 18, 6155.	1.2	9
650	Molecular Mapping Alzheimer's Disease: MALDI Imaging of Formalin-fixed, Paraffin-embedded Human Hippocampal Tissue. The Open Neurology Journal, 2016, 10, 88-98.	0.4	9
651	Melatonin exhibits antioxidant properties in a mouse brain slice model of excitotoxicity. International Journal of Circumpolar Health, 2002, 61, 32-40.	0.5	9
652	Aberrant Phosphoinositide Metabolism in Alzheimer's Diseasea. Annals of the New York Academy of Sciences, 1993, 695, 46-49.	1.8	8
653	Elastase is associated with the neurofibrillary pathology of Alzheimer disease: a putative link between proteolytic imbalance and oxidative stress. Restorative Neurology and Neuroscience, 1996, 9, 213-217.	0.4	8
654	A diet at amyloid beta?. Neurobiology of Aging, 2001, 22, 161-163.	1.5	8
655	Iron homeostasis is maintained in the brain, but not the liver, following mild hypoxia. Redox Report, 2007, 12, 257-266.	1.4	8
656	A New Model of Oxidative Stress in Rat Pups. Neonatology, 2008, 94, 293-299.	0.9	8
657	Heme-a, the heme prosthetic group of cytochrome c oxidase, is increased in Alzheimer's disease. Neuroscience Letters, 2009, 461, 302-305.	1.0	8
658	Expression of growth hormone gene in the baboon eye. Experimental Eye Research, 2018, 169, 157-169.	1.2	8
659	Molecular Processing of Tau Protein in Progressive Supranuclear Palsy: Neuronal and Glial Degeneration. Journal of Alzheimer's Disease, 2021, 79, 1517-1531.	1.2	8
660	Oxidative Stress and Alzheimer's Disease. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 189-198.	0.4	8
661	Raffinee in the Treatment of Spinal Cord Injury: An Open-Labeled Clinical Trial. Annals of the New York Academy of Sciences, 2005, 1042, 396-402.	1.8	7
662	Altered redox balance in disease: Can we change the new equilibria?. Annals of Neurology, 2009, 65, 121-123.	2.8	7
663	Mark Anthony Smith (1965–2010): Visionary, Alzheimer Researcher, and Editor-in-Chief of the Journal of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 1-2.	1.2	7
664	Journal of Parkinson's Disease – Birth of JAD's New Sister. Journal of Alzheimer's Disease, 2011, 25, 1-1.	1.2	7
665	Alternative neural circuitry that might be impaired in the development of Alzheimer disease. Frontiers in Neuroscience, 2015, 9, 145.	1.4	7
666	Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells. Cellular Immunology, 2015, 295, 83-91.	1.4	7

#	Article	IF	CITATIONS
667	1,3-propanediol binds deep inside the channel to inhibit water permeation through aquaporins. Protein Science, 2016, 25, 433-441.	3.1	7
668	Subgroup differences in â€~brain-type' transferrin and α-synuclein in Parkinson's disease and multiple system atrophy. Journal of Biochemistry, 2016, 160, 87-91.	0.9	7
669	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 43-67.	0.8	7
670	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	1.7	7
671	Potential longâ€ŧerm effect of tumor necrosis factor inhibitors on dementia risk: A propensity score matched retrospective cohort study in US veterans. Alzheimer's and Dementia, 2022, 18, 1248-1259.	0.4	7
672	Alterations of the X Chromosome in Lymphocytes of Alzheimer's Disease Patients. Current Alzheimer Research, 2015, 12, 990-996.	0.7	7
673	Iron: A Pathological Mediator of Alzheimer Disease?. Agro Food Industry Hi-tech, 2009, 19, 33-36.	1.0	7
674	The largest unmet market: chronic diseases of aging. Mini-Reviews in Medicinal Chemistry, 2013, 13, 1.	1.1	7
675	Universal Isolation of Cross-Linked Peptides:  Application to Neurofibrillary Tangles. Bioconjugate Chemistry, 1999, 10, 112-118.	1.8	6
676	Redox Active Iron at the Center of Oxidative Stress in Alzheimer Disease. Letters in Drug Design and Discovery, 2005, 2, 479-482.	0.4	6
677	Presenilin mutation: A deadly first hit in Alzheimer disease. Free Radical Biology and Medicine, 2006, 40, 737-739.	1.3	6
678	Amyloid-β, BACE, and oxidative stress in Alzheimer's disease, a commentary on "The different aggregation state of beta-amyloid 1-42 mediates different effects on oxidative stress, neurodegeneration and BACE-1 expression― Free Radical Biology and Medicine, 2006, 41, 188-189.	1.3	6
679	Paraffin-embedded tissue (PET) blot method: Application to Alzheimer disease. Journal of Neuroscience Methods, 2010, 190, 244-247.	1.3	6
680	Untangling the Vascular Web from Alzheimer Disease and Oxidative Stress. Canadian Journal of Neurological Sciences, 2012, 39, 4-4.	0.3	6
681	Foreword (The Largest Unmet Market: Chronic Diseases of Aging). Mini-Reviews in Medicinal Chemistry, 2013, 13, 1-1.	1.1	6
682	Precision medicine using individualized biosimulations of drug dosing: Alzheimer's disease. , 2014, , .		6
683	From Neurodegeneration to Brain Health: AnÂIntegrated Approach. Journal of Alzheimer's Disease, 2015, 46, 271-283.	1.2	6
684	Modulation of Parkinson's Disease Associated Protein Rescues Alzheimer's Disease Degeneration. Journal of Alzheimer's Disease, 2016, 55, 73-75.	1.2	6

#	Article	IF	CITATIONS
685	From Oxidative Stress to Ageing via Lifestyle, Nutraceuticals, Polypharmacy, and Neuropsychological Factors. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-2.	1.9	6
686	α-Synuclein and tau, two targets for dementia. Studies in Natural Products Chemistry, 2020, 67, 1-25.	0.8	6
687	Community Engagement Practices at Research Centers in U.S. Minority Institutions: Priority Populations and Innovative Approaches to Advancing Health Disparities Research. International Journal of Environmental Research and Public Health, 2021, 18, 6675.	1.2	6
688	Fractal Analysis of Epithelial-Connective Tissue Interface in Basal Cell Carcinoma of the Skin. Current Bioinformatics, 2013, 8, 357-361.	0.7	6
689	The Role of the Iron Stain in Assessing Intracranial Hemorrhage. The Open Neurology Journal, 2016, 10, 136-142.	0.4	6
690	Oxidative Stress in Parkinson`s Disease. The Open Pathology Journal, 2009, 3, 38-42.	1.0	6
691	Mitochondrial Fusion Suppresses Tau Pathology-Induced Neurodegeneration and Cognitive Decline. Journal of Alzheimer's Disease, 2021, 84, 1057-1069.	1.2	6
692	Evidence for the novel expression of human kallikrein-related peptidase 3, prostate-specific antigen, in the brain. International Journal of Clinical and Experimental Pathology, 2009, 2, 267-74.	0.5	6
693	The Four Pillars of Alzheimer's Prevention. Cerebrum: the Dana Forum on Brain Science, 2017, 2017, .	0.1	6
694	Hypoxic Preconditioning Averts Sporadic Alzheimer's Disease-Like Phenotype in Rats: A Focus on Mitochondria. Antioxidants and Redox Signaling, 2022, 37, 739-757.	2.5	6
695	Protocol for quantitative analysis of paired helical filament solubilization: a method applicable to insoluble amyloids and inclusion bodies. Brain Research Protocols, 1997, 1, 247-252.	1.7	5
696	CORRECTIONS AND CLARIFICATIONS. Science, 2003, 299, 1014b-1015.	6.0	5
697	Oxidative Stress and Neurodegeneration: An Inevitable Consequence of Aging? Implications for Therapy. , 2010, , 305-323.		5
698	Alzheimer's Disease and Vascular Deficiency: Lessons from Imaging Studies and Down Syndrome. Current Gerontology and Geriatrics Research, 2012, 2012, 1-5.	1.6	5
699	Tackling the Elusive Challenges Relevant to Conquering the 100-Plus Year Old Problem of Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 108-116.	0.7	5
700	Ethanol-Fixed, Paraffin-Embedded Tissue Imaging: Implications for Alzheimer's Disease Research. Journal of the American Society for Mass Spectrometry, 2020, 31, 2416-2420.	1.2	5
701	Immune modulations and immunotherapies for Alzheimer's disease: a comprehensive review. Reviews in the Neurosciences, 2022, 33, 365-381.	1.4	5
702	Functional and Genomic Features of Human Genes Mutated in Neuropsychiatric Disorders. The Open Neurology Journal, 2016, 10, 143-148.	0.4	5

#	Article	IF	CITATIONS
703	Low Dose Pioglitazone Attenuates Oxidative Damage in Early Alzheimer's Disease by Binding mitoNEET. International Journal of Knowledge Discovery in Bioinformatics, 2015, 5, 24-45.	0.8	5
704	Methemoglobinemia—A biomarker and a link to ferric iron accumulation in Alzheimer's disease. Advances in Bioscience and Biotechnology (Print), 2014, 05, 12-18.	0.3	5
705	Tackling the Elusive Challenges Relevant to Conquering the 100-Plus Year Old Problem of Alzheimer's Disease. Current Alzheimer Research, 2013, 10, 108-116.	0.7	5
706	Implication of ferroptosis ironâ€dependent programmed cell death mechanism in neurodegeneration. Alzheimer's and Dementia, 2020, 16, e043978.	0.4	5
707	Apoptotic and Oxidative Indicators in Alzheimer's Disease. , 2002, , 225-246.		4
708	Dangers of the amyloid- \hat{l}^2 vaccination. Acta Neuropathologica, 2002, 104, 110-110.	3.9	4
709	Amyotrophic lateral sclerosis: a novel hypothesis involving a gained 'loss of function' in the JNK/SAPK pathway. Redox Report, 2003, 8, 129-133.	1.4	4
710	Amyloids, Aggregates and Neuronal Inclusions: Good or Bad News for Neurons?. Current Medicinal Chemistry Immunology, Endocrine & Metabolic Agents, 2003, 3, 293-298.	0.2	4
711	Nuclear microscopy of diffuse plaques in the brains of transgenic mice. Nuclear Instruments & Methods in Physics Research B, 2005, 231, 326-332.	0.6	4
712	Neurogenesis in Human Hippocampus: Implications for Alzheimer Disease Pathogenesis. Neuroembryology and Aging, 2006, 4, 175-182.	0.1	4
713	Solving the insoluble. Journal of Alzheimer's Disease, 2006, 9, 301-304.	1.2	4
714	Therapeutic potential of oxidative stress reduction in Alzheimer's disease. Future Neurology, 2006, 1, 1-4.	0.9	4
715	Natural Oxidant Balance in Parkinson Disease. Archives of Neurology, 2009, 66, 1445.	4.9	4
716	Memantine. American Journal of Pathology, 2010, 176, 540-541.	1.9	4
717	Molecular Pathology of Alzheimer's Disease. Colloquium Series on Neurobiology of Alzheimer S Disease, 2013, 1, 1-91.	0.0	4
718	Plaques and tangles: Birthmarks of the aging soul. Biochemical Pharmacology, 2014, 88, 423-425.	2.0	4
719	Loss of JAM-C leads to impaired esophageal innervations and megaesophagus in mice. Ecological Management and Restoration, 2016, 29, 864-871.	0.2	4
720	Incubation with Cu(II) and Zn(II) salts enhances MALDIâ€TOF mass spectra of amyloidâ€beta and αâ€synuclein toward in vivo analysis. Journal of Mass Spectrometry, 2018, 53, 162-171.	0.7	4

#	Article	IF	CITATIONS
721	Putative Gonadotropin-Releasing Hormone Agonist Therapy and Dementia: An Application of Medicare Hospitalization Claims Data. Journal of Alzheimer's Disease, 2018, 63, 1269-1277.	1.2	4
722	Evidence for Oxidative Damage in the Autistic Brain. , 2009, , 35-46.		4
723	Transgenic Mouse Models of Alzheimer's Disease. Frontiers in Neuroscience, 2008, , 1-18.	0.0	4
724	SWADESH: A Comprehensive Platform for Multimodal Data and Analytics for Advanced Research in Alzheimer's Disease and Other Brain Disorders. Journal of Alzheimer's Disease, 2021, , 1-5.	1.2	4
725	Hyperphosphorylated Tau Relates to Improved Cognitive Performance and Reduced Hippocampal Excitability in the Young rTg4510 Mouse Model of Tauopathy. Journal of Alzheimer's Disease, 2022, , 1-15.	1.2	4
726	Hibernation, a Model of Neuroprotection. Scientific World Journal, The, 2001, 1, 108-108.	0.8	3
727	Effect of the herbicide 4-CPA on human erythrocyte antioxidant enzymesin vitro. Redox Report, 2001, 6, 153-154.	1.4	3
728	Melatonin increases survival and inhibits oxidative and amyloid pathology in a transgenic model of Alzheimer's disease. Journal of Neurochemistry, 2003, 86, 1312-1312.	2.1	3
729	Commentary: "Ceramide and cholesterol: Possible connections between normal aging of the brain and Alzheimer's disease. Just hypotheses or molecular pathways to be identified?―By Claudio Costantini, Rekha M.K. Kolasani, and Luigi Puglielli. , 2005, 1, 51-52.		3
730	Neurofibrillary Tangle Formation as a Protective Response to Oxidative Stress in Alzheimer's Disease. , 2009, , 103-113.		3
731	Prospects on the Origin of Alzheimer's disease. Journal of Alzheimer's Disease, 2010, 20, 669-672.	1.2	3
732	Potential Role of Iron in a Mediterranean-style Diet. Archives of Neurology, 2010, 67, 1286.	4.9	3
733	In Vivo and In Silico Evidence: Hippocampal Cholesterol Metabolism Decreases with Aging and Increases with Alzheimers Disease – Modeling Brain Aging and Disease. , 2011, , .		3
734	The origin of oxidative stress in neurodegenerative disease: Mark Anthony Smith 1965–2010. Free Radical Biology and Medicine, 2011, 51, 248-249.	1.3	3
735	Neuropathology of Alzheimer's Disease. , 2014, , 2014-2020.		3
736	Preventive Effect of 3,5-dihydroxy-4-methoxybenzyl Alcohol (DHMBA) and Zinc, Components of the Pacific Oyster <i>Crassostrea gigas</i> , on Glutamatergic Neuron Activity in the Hippocampus. Biological Bulletin, 2015, 229, 282-288.	0.7	3
737	Geometric complexity identifies platelet activation in familial hypercholesterolemic patients. Microscopy Research and Technique, 2015, 78, 519-522.	1.2	3
738	Iron·ic facts about dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 446-447.	0.9	3

#	Article	IF	CITATIONS
739	Genetic Risk of Alzheimer's Disease: Three Wishes Now That the Genie is Out of the Bottle. Journal of Alzheimer's Disease, 2018, 66, 421-423.	1.2	3
740	Neuropathology in Consecutive Forensic Consultation Cases with a History of Remote Traumatic Brain Injury. Journal of Alzheimer's Disease, 2019, 72, 683-691.	1.2	3
741	National Dementia BioBank: A Strategy for the Diagnosis and Study of Neurodegenerative Diseases in México. Journal of Alzheimer's Disease, 2020, 76, 853-862.	1.2	3
742	Interaction of Calcium-Calmodulin in Microtubule Assembly in Vitro. , 1982, , 73-84.		3
743	Transcriptome-To-Metabolomeâ,,¢ Biosimulation Reveals Human Hippocampal Hypometabolism with Age and Alzheimer's Disease. International Journal of Knowledge Discovery in Bioinformatics, 2011, 2, 1-18.	0.8	3
744	Mechanisms Involved in Gender Differences in Alzheimer's Disease: The Role of Leuteinizing and Follicle Stimulating Hormones. , 2004, , 1234-1237.		3
745	Fractal analysis of monocytes in diabetes. Clinical Hemorheology and Microcirculation, 2006, 35, 269-72.	0.9	3
746	Microtubules are not altered in the dystrophic chicken. Experimental Cell Research, 1986, 163, 266-272.	1.2	2
747	Oxidative Damage and Antioxidant Responses in Alzheimer's Disease. , 0, , 371-378.		2
748	Signal Transduction in Alzheimer's Disease. NeuroSignals, 2002, 11, 235-235.	0.5	2
749	Oxidative Stress Mechanisms and Potential Therapeutic Modalities in Alzheimer Disease. Medicinal Chemistry Reviews Online, 2004, 1, 19-23.	0.1	2
750	In Situ Localization of Nonenzymatic Peroxidase‣ike Activity of Tissueâ€Bound Transition Metals. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2004, 20, Unit17.4.	1.1	2
751	Prospects for Antioxidant Therapy in Mild Cognitive Impairment and Alzheimer's Disease. , 2007, , 451-466.		2
752	Cerebrotendinous xanthomatosis: a critical update. Future Neurology, 2008, 3, 491-501.	0.9	2
753	Mitochondria and Neurodegenerative Diseases. Journal of Alzheimer's Disease, 2010, 20, S253-S253.	1.2	2
754	Iron chelation and nanoparticle target delivery in the development of new multifunctional disease-modifying drugs for Alzheimer's disease. Therapeutic Delivery, 2012, 3, 571-574.	1.2	2
755	Alzheimer's Disease: Advances for a New Century. Journal of Alzheimer's Disease, 2012, 33, S1-S1.	1.2	2
756	ls exerciseâ€inâ€aâ€bottle likely to proffer new insights into Alzheimer's disease?. Journal of Neurochemistry, 2013, 127, 4-6.	2.1	2

#	Article	IF	CITATIONS
757	Ethics Review as a Catalyst for Progress. Journal of Alzheimer's Disease, 2014, 40, 233-235.	1.2	2
758	Geometric complexity is increased in in vitro activated platelets. Microscopy Research and Technique, 2015, 78, 485-488.	1.2	2
759	Promise from the Sea. Marine Drugs, 2016, 14, 178.	2.2	2
760	Antioxidants in theÂPrevention and Treatment of Alzheimer's Disease. , 2017, , 523-553.		2
761	Alzheimer's and Parkinson's Disease Novel Therapeutic Target. International Journal of Knowledge Discovery in Bioinformatics, 2017, 7, 68-82.	0.8	2
762	Clinical biomarkers for cancer recognition and prevention: A novel approach with optical measurements. Cancer Biomarkers, 2018, 22, 179-198.	0.8	2
763	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases. Frontiers in Physiology, 2019, 10, 788.	1.3	2
764	Rapid method towards proteomic analysis of dried blood spots by MALDI mass spectrometry. Clinical Mass Spectrometry, 2019, 12, 30-36.	1.9	2
765	Strawberry (Fragaria ananassa duch.) Alba extract attenuates DNA damage in lymphocytes of patients with Alzheimer's disease. Journal of Food Biochemistry, 2021, 45, e13637.	1.2	2
766	Conformation- and phosphorylation-dependent electron tunnelling across self-assembled monolayers of tau peptides. Journal of Colloid and Interface Science, 2022, 606, 2038-2050.	5.0	2
767	The Role of Oxidative Stress in the Pathological Sequelae of Alzheimer Disease. , 1998, , 195-204.		2
768	Oxidative Stress in Alzheimer's Disease: A Critical Appraisal of the Causes and the Consequences. , 2011, , 211-220.		2
769	Editorial - Chronic or Late Lyme Neuroborreliosis: Present and Future. The Open Neurology Journal, 2012, 6, 78-78.	0.4	2
770	Hippocampal Unicellular Recordings and Hippocampal-dependent Innate Behaviors in an Adolescent Mouse Model of Alzheimer's disease. Bio-protocol, 2020, 10, e3529.	0.2	2
771	The Pathology of Alzheimer Disease Elicits an In Vivo Immunological Response. American Journal of Immunology, 2007, 3, 10-14.	0.1	2
772	The Role of Oxidative Damage to Nucleic Acids in the Pathogenesis of Neurological Disease. , 2007, , 123-140.		2
773	Treatment advances in Alzheimer's disease based on the oxidative stress model. F1000 Medicine Reports, 2009, 1, .	2.9	2
774	Two Hits and You're Out? A Novel Mechanistic Hypothesis of Alzheimer Disease. , 2008, , 191-204.		2

#	Article	IF	CITATIONS
775	Pathology's new role: defining disease process and protective responses. International Journal of Clinical and Experimental Pathology, 2008, 1, 1-4.	0.5	2
776	Fractal dimension of bone texture in radiographs correlates to ultrasound broadband attenuation T-score. Clinical and Experimental Rheumatology, 2013, 31, 389-93.	0.4	2
777	A STUDY OF ACTIN BINDING PROTEINS IN HIRANO BODIES. Journal of Neuropathology and Experimental Neurology, 1986, 45, 335.	0.9	1
778	Arachidonic acid metabolism in Ascidia ceratodes eggs: role of lipid peroxidation. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1988, 90, 785-789.	0.2	1
779	Senile plaques and neurofibrillary tangles: The concurrent lesions of alzheimer's disease. Neurobiology of Aging, 1995, 16, 343-344.	1.5	1
780	P1-266 The critical role of the ERK pathway in the pathogenesis of Alzheimer's disease. Neurobiology of Aging, 2004, 25, S172.	1.5	1
781	The Fallacy of Amyloid and Cognition in Alzheimer???s Disease. Drugs and Aging, 2006, 23, 179.	1.3	1
782	Sequestration of p27 within the cytoplasm of cardiac myocytes in chronic ischemic heart disease: pathogenic implications for ischemic cardiomyopathy. Age, 2006, 28, 85-91.	3.0	1
783	Neurodegenerative Diseases: Mechanisms and Therapies. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-2.	3.0	1
784	DOES THE OXIDATIVE STRESS AND CEREBRAL ATHEROSCLEROSIS INITIATE BRAIN HYPOPERFUSION AND THE DEVELOPMENT OF ALZHEIMER DISEASE?. Atherosclerosis Supplements, 2008, 9, 154.	1.2	1
785	The Neuroscience Peer Review Consortium. Journal of Comparative Neurology, 2009, 513, 333-334.	0.9	1
786	Specific reaction of Met 35 in amyloid beta peptide with hypochlorous acid. Free Radical Research, 2010, 44, 734-741.	1.5	1
787	Mark A. Smith: Scholar and Innovator. European Journal of Histochemistry, 2011, 55, 2.	0.6	1
788	Mark A. Smith: The Scientist, the Man. International Journal of Experimental Pathology, 2011, 92, 297-298.	0.6	1
789	The Contribution of the Amyloid Hypothesis to the Understanding of Alzheimer's Disease: A Critical Overview. International Journal of Alzheimer's Disease, 2012, 2012, 1-2.	1.1	1
790	Inge Grundke-Iqbal: A Legacy of Tau in the Etiology of Alzheimer Disease (1937–2012). Journal of Alzheimer's Disease, 2012, 33, 1-2.	1.2	1
791	Are Alzheimer's Disease and Aging Evolutionary?. Journal of Alzheimer's Disease, 2013, 35, 637-637.	1.2	1

#	Article	IF	CITATIONS
793	Modification of hippocampal excitability in brain slices pretreated with a low nanomolar concentration of Zn ²⁺ . Journal of Neuroscience Research, 2015, 93, 1641-1647.	1.3	1
794	Simultaneous Onset of Alzheimer's Disease in a Husband and Wife in Their Mid-Fifties: What Do We Really Know About Environmental Factors?. The Open Neurology Journal, 2015, 9, 1-3.	0.4	1
795	Raúl Mena: 1953–2014. Journal of Alzheimer's Disease, 2015, 45, 325-327.	1.2	1
796	Tackling Alzheimer's Disease by Targeting Oxidative Stress and Mitochondria. , 2016, , 477-502.		1
797	Scientific Information Security in Information Science and Academic Publishing. Artificial Organs, 2016, 40, 425-430.	1.0	1
798	Tau Proteins. , 2017, , 145-160.		1
799	Molecular Pathways in Normal Aging andÂNeurodegeneration: Mechanisms andÂTherapeutics. Journal of Alzheimer's Disease, 2017, 60, S1-S2.	1.2	1
800	Birth of JAD: 20 Years Later. Journal of Alzheimer's Disease, 2018, 62, 901-901.	1.2	1
801	Decreased salivary lactoferrin levels are specific to Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e042621.	0.4	1
802	Alzheimer's and Consciousness: How Much Subjectivity Is Objective?. Neuroscience Insights, 2021, 16, 263310552110338.	0.9	1
803	Alzheimer's Disease Pharmacology. , 2021, , .		1
804	Neuronal Oxidative Stress is a Common Feature of Alzheimer's and Parkinson's Diseases. Advances in Behavioral Biology, 1998, , 77-80.	0.2	1
805	Prion and Alzheimer Diseases: The Road to Pathogenesis is Paved with Copper. , 2002, , 96-101.		1
806	Unraveling the Role of Mitochondria in Alzheimer's Disease. , 2020, , 407-430.		1
807	Metal-Catalyzed Redox Activity in Neurodegenerative Disease. , 2003, , 1-14.		1
808	Oxidative Stress and Neuropsychiatric Disorders in the Life Spectrum. , 2016, , 157-166.		1
809	Synaptic dysfunction and oxidative stress in Alzheimer's disease: Emerging mechanisms. Journal of Cellular and Molecular Medicine, 2006, 10, .	1.6	1
810	Neuronal Cytoskeleton Regulation and Neurodegeneration. , 2009, , 63-78.		1

#	Article	IF	CITATIONS
811	Launch of â€~Atlas Journal of Medical and Biological Sciences'. Atlas Journal of Medical and Biological Sciences, 2011, `, 1-1.	0.3	1
812	Role of ferroptosis iron-dependent cell death in neurodegenerative processes Alzheimer's and Dementia, 2021, 17 Suppl 3, e055243.	0.4	1
813	Carbonyl-Related Modification of Neurofilaments in Aizheimer Disease. Journal of Neuropathology and Experimental Neurology, 1995, 54, 434.	0.9	0
814	Journal of Alzheimer's Disease Established as a Leading Journal. Journal of Alzheimer's Disease, 2001, 3, 521-523.	1.2	0
815	Phosphorylation, Microtubule Binding and Aggregation of Tau Protein in Alzheimer's Disease. , 0, , 601-607.		0
816	Metal Ions and Neurodegenerative Diseases Paolo Zatta, Editor. World Scientific Publishing Co. Pte. Ltd, Singapore, 2004, pp 400. Aging Cell, 2004, 3, 85-85.	3.0	0
817	P4-250 Redox-active iron oxidizes ribosomal RNa in neurons vulnerable to Alzheimer's disease. Neurobiology of Aging, 2004, 25, S546.	1.5	0
818	P3-275 Phosphorylation dependent control of oxidative modification in Alzheimer disease. Neurobiology of Aging, 2004, 25, S432-S433.	1.5	0
819	P4-242 Oxidative damage in ferritin-induced neurodegeneration. Neurobiology of Aging, 2004, 25, S544.	1.5	0
820	Oxidative Stress in Alzheimer Disease: The Earliest Cytological and Biochemical Feature. , 2004, , 164-171.		0
821	Role of Amyloid-β in Alzheimer's Disease. International Journal of Experimental Pathology, 2005, 86, 131-131.	0.6	0
822	Introduction: Imaging in Alzheimer's disease. Microscopy Research and Technique, 2005, 67, 113-113.	1.2	0
823	The End of a Chilean Institute. Science, 2005, 308, 792b-793b.	6.0	0
824	Commentary on "Perspective on a pathogenesis and treatment of Alzheimer's disease.―Therapeutic strategies for Alzheimer's disease: The need for a new era of innovation. , 2006, 2, ALZJJALZ200607002.		0
825	Foreword: Apoptotic Mechanisms in Neurodegenerative Diseases. Current Alzheimer Research, 2006, 3, 267-267.	0.7	0
826	Sir Martin Roth – A Debt of Gratitude. Journal of Alzheimer's Disease, 2007, 11, 1-1.	1.2	0
827	Mitochondrial autophagocytosis in Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 2007, 66, 434.	0.9	0
828	Nonestrogen-based hormonal therapies for Alzheimer's disease. Future Neurology, 2008, 3, 399-407.	0.9	0

#	Article	IF	CITATIONS
829	Is Alzheimers Disease a Myth? When is Disease a Disease?. Current Alzheimer Research, 2009, 6, 82-82.	0.7	0
830	The Neuroscience Peer Review Consortium. European Psychiatry, 2009, 24, 69-70.	0.1	0
831	Food Antioxidants and Alzheimerâ \in ${}^{ imes}$ s Disease. Oxidative Stress and Disease, 2009, , .	0.3	0
832	2009 Award Recipients-Peter C. Burger, MD, Pierluigi Gambetti, MD, and Nicholas K. Gonatas, MD. Journal of Neuropathology and Experimental Neurology, 2009, 68, 1244-1246.	0.9	0
833	Chapter 19. Targeting Oxidative Mechanisms in Alzheimer Disease. RSC Drug Discovery Series, 2010, , 97-107.	0.2	0
834	Alzheimer's disease therapy: a moving target. Therapy: Open Access in Clinical Medicine, 2011, 8, 457-458.	0.2	0
835	Mark A. Smith, PhD: Renegade Scientist and Visionary. Journal of Neuropathology and Experimental Neurology, 2011, 70, 495-497.	0.9	0
836	Neurodegenerative processes in Alzheimer's disease: an overview of pathogenesis with strategic biomarker potential. Future Neurology, 2011, 6, 173-185.	0.9	0
837	The concept of redox balance in Alzheimer's disease: Mark Anthony Smith 1965–2010. Redox Report, 2011, 16, 47-48.	1.4	0
838	Isotyping the Human TOMM40 Variable-Length Polymorphism by Gene Amplification and Restriction Digest. Current Alzheimer Research, 2012, 9, 1168-1173.	0.7	0
839	Editorial [Special Issue in Honor of the 70th Birthday of Dr. Atta-ur-Rahman, FRS]. Mini-Reviews in Medicinal Chemistry, 2012, 12, i-i.	1.1	0
840	Mark Smith: Pioneer of Alzheimer Disease Research. Neurotoxicity Research, 2012, 22, 181-181.	1.3	0
841	Journal of Huntington's Disease – The Family Gets Bigger. Journal of Alzheimer's Disease, 2012, 30, 735-735.	1.2	0
842	Mark A. Smith: neurocytochemistry innovator. Journal of Neurochemistry, 2012, 120, 1139-1140.	2.1	0
843	Nutrients and Food Constituents in Cognitive Decline and Neurodegenerative Disease. , 2013, , 373-390.		0
844	Larry Sparks: Innovator and Iconoclast. Journal of Alzheimer's Disease, 2013, 37, 1-1.	1.2	0
845	Looking at Alzheimerâ€`s disease from a different angle. Future Neurology, 2014, 9, 19-22.	0.9	0
846	P3-029: Oxidative damage is correlated with mitochondrial autophagy. , 2015, 11, P630-P630.		0

#	Article	IF	CITATIONS
847	P2-152: Molecular mapping of Alzheimer's disease: Imaging mass spectrometry. , 2015, 11, P545-P545.		Ο
848	Two Hundred Treasured Issues!. Journal of Alzheimer's Disease, 2015, 44, 725-725.	1.2	0
849	Autophagy in Alzheimer's disease: A Cleaning Service Out-of-order?. Current Topics in Neurotoxicity, 2015, , 123-142.	0.4	0
850	Morphometric analysis of cryofixed muscular tissue for intraoperative consultation. Microscopy Research and Technique, 2016, 79, 155-161.	1.2	0
851	Nutritional supplements and dementia. Clinical Nutrition, 2017, 36, 613-614.	2.3	0
852	Asking the Right Questions. Negotiation Journal, 2017, 33, 375-378.	0.3	0
853	Meet Our Editor. Letters in Drug Design and Discovery, 2017, 14, 251-251.	0.4	0
854	Metals and Mitochondria in Neurodegeneration. , 2017, , 283-311.		0
855	Preface. Mini-Reviews in Medicinal Chemistry, 2017, 18, 2.	1.1	0
856	Meet Our Co-Editor. Mini-Reviews in Medicinal Chemistry, 2017, 17, 319-319.	1.1	0
857	Meet Our Editor. Current Clinical Pharmacology, 2017, 12, .	0.2	0
858	Preface. Mini-Reviews in Medicinal Chemistry, 2018, 19, 2-2.	1.1	0
859	Preface: Alzheimer's Disease: New Beginnings. Journal of Alzheimer's Disease, 2018, 64, S1-S1.	1.2	0
860	Meet Our Co-Editor. Mini-Reviews in Medicinal Chemistry, 2019, 19, 449-449.	1.1	0
861	P4â€513: ACTIVATION OF FERROPTOSIS, AN IRONâ€DEPENDENT FORM OF NONâ€APOPTOTIC DEATH IN NEURC Alzheimer's and Dementia, 2019, 15, P1510.	0.4	0
862	MSDC-0160 and MSDC-0602 Binding with Human Mitochondrial Pyruvate Carrier (MPC) 1 and 2 Heterodimer. , 2021, , 427-455.		0
863	Akin to the Great Revolutions or Ages, the Combinatorial Approach for Preempting Genetic Diseases Requires the Confluence of Independent Scientific and Societal Developments Emerging from Synergisms Between Serendipitous, Planned and Natural Progressions Significantly Magnifying the Impact Over the Simple Sum of their Individual Components or Subfields. Acta Scientific Microbiology,	0.0	0
864	2021, 4, 105-120. American Dementia: Brain Health in an Unhealthy Society by Daniel R. George and Peter J. Whitehouse, Johns Hopkins Press, 2021, 390 pp Journal of Alzheimer's Disease, 2021, 83, 935-935.	1.2	0

#	Article	IF	CITATIONS
865	Alzheimer's and Parkinson's Disease Novel Therapeutic Target. , 2021, , 411-426.		Ο
866	Role of Heme Catabolism in Neurodegenerative Diseases. , 2002, , 135-143.		0
867	Neuronal Survival and Death in Alzheimer Disease. Advances in Behavioral Biology, 2002, , 49-57.	0.2	0
868	Metal Homeostasis and Its Relation to Oxidative Stress in Alzheimer's Disease. Oxidative Stress and Disease, 2003, , .	0.3	0
869	La función del estrés oxidativo en la patogénesis de la enfermedad de Alzheimer. Revista Chilena De Neuro-Psiquiatria, 0, 41, .	0.0	0
870	Nutritional Antioxidants, Vitamins, Cognition, and Neurodegenerative Disease. , 2004, , 813-823.		0
871	Ciprofloxacin Does Not Exert Nephrotoxicity in Rats. American Journal of Infectious Diseases, 2005, 1, 145-148.	0.1	Ο
872	Amyloid and _ in Alzheimerâ \in ™s Disease. Oxidative Stress and Disease, 2005, , 121-129.	0.3	0
873	Temporal Primacy of Oxidative Stress in the Pathological Cascade of Alzheimer Disease. Oxidative Stress and Disease, 2005, , 365-372.	0.3	0
874	Oxidative Adaptation in Aging and Alzheimer's Disease. Oxidative Stress and Disease, 2005, , 117-125.	0.3	0
875	The Potential Application of Antioxidant Agents in Alzheimer Disease Therapeutics. , 2007, , 194-211.		0
876	Mitochondrial Autophagocytosis in Alzheimer Disease. FASEB Journal, 2007, 21, A73.	0.2	0
877	Lipoic Acid and Nâ€Acetyl Cysteine Protect Against Mitochondrialâ€Related Oxidative Stress in Fibroblasts from Alzheimer Disease Patients. FASEB Journal, 2007, 21, .	0.2	Ο
878	Lipoic acid and N-acetyl cysteine protect against mitochondrial-related oxidative stress in fibroblasts from Alzheimer disease patients. Journal of Neuropathology and Experimental Neurology, 2007, 66, 434.	0.9	0
879	Protein Misfolding in Alzheimer's Disease. Enzyme Inhibitors Series, 2007, , .	0.1	0
880	The primary pathogenetic role of vascular hypoperfusion, mitochondria failure and oxidative stress in aging and Alzheimer disease. FASEB Journal, 2008, 22, 167.3.	0.2	0
881	Antibodyâ€Antigen Dissociation: A Novel Diagnostic Tool in Alzheimer Disease. FASEB Journal, 2008, 22, 167.10.	0.2	0
882	Neurodegenerative Phenotypes Induced by MYCâ€Driven Neuronal Cell Cycle Reâ€entry: Relevance to Alzheimer Disease. FASEB Journal, 2008, 22, 167.6.	0.2	0

#	Article	IF	CITATIONS
883	Cellular Respiration and Tumor Suppressor Genes. , 2009, , 131-144.		Ο
884	Oxidative Stress Associated Signal Transduction Cascades in Alzheimer Disease. Contemporary Clinical Neuroscience, 2009, , 121-136.	0.3	0
885	Alzheimer Disease: Oxidative Stress and Compensatory Responses. , 2009, , 109-120.		0
886	Oxidative Stress and Alzheimer Disease: Mechanisms and Therapeutic Opportunities. Advances in Neurobiology, 2011, , 607-631.	1.3	0
887	Association of Mitochondrial Signaling in Alzheimer's Disease and Hypoxia. , 2011, , 50-61.		0
888	Pathological phenotype in familial neurodegenerative disease: implications for families and therapeutic constructs. Therapy: Open Access in Clinical Medicine, 2011, 8, 475-479.	0.2	0
889	A Pleotrophic Age for Alzheimer and Parkinson disease. , 2012, 02, .		0
890	Pharmaceutical Regulation: Crossroad of Opportunity as the Distinction between Food and Drugs Blurs. Pharmaceutical Regulatory Affairs: Open Access, 2012, 01, .	0.2	0
891	Therapeutic Opportunities in Alzheimer Disease: Current Concepts. , 2012, , 767-788.		0
892	RLipoic Acid as a Potent Agent of Mitochondrial Protectionin Alzheimer's Disease. Oxidative Stress and Disease, 2012, , 455-467.	0.3	0
893	Cloning's Promise. Cloning & Transgenesis, 2013, 02, .	0.1	0
894	Glial Cell Extracellular Matrix in Alzheimer's Disease. , 1995, , 158-170.		0
895	Asking the Right Questions. Science, 1999, 285, 663-663.	6.0	0
896	Meet the Editorial Board. Current Protein and Peptide Science, 2015, 16, 181-181.	0.7	0
897	Oxidative Damage is Correlated with Mitochondrial Autophagy. FASEB Journal, 2015, 29, 613.1.	0.2	0
898	INVITED ARTICLE FROM THE 2020 TEXAS ACADEMY OF SCIENCE TEXAS DISTINGUISHED SCIENTIST. Texas Journal of Science, 2020, 72, .	0.3	0
899	Role of Oxidative Insult and Neuronal Survival in Alzheimer's and Parkinson's Diseases. , 2008, , 133-148.		0
900	Cell Cycle Activation and the Amyloid-β Protein in Alzheimer's Disease. , 2006, , 299-308.		0

#	Article	IF	CITATIONS
901	Neurogenesis in Alzheimer's Disease. , 2006, , 359-370.		0
902	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases, Volume II. Frontiers in Physiology, 2021, 12, 826129.	1.3	0
903	Functional study in the young rTg4510 mouse model of tauopathy. Alzheimer's and Dementia, 2021, 17, e058539.	0.4	Ο
904	The Changing landscape of Alzheimer's disease: From Insoluble to Soluble and from Pathogen to Protector. , 2006, , 367-369.		0
905	Lester (Skip) Binder (1949-2013): in the beginning was tau. Journal of Alzheimer's Disease, 2014, 40 Suppl 1, S5.	1.2	0