Marta Rusiñol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
2	Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. Science of the Total Environment, 2022, 829, 154431.	8.0	5
3	Evaluation of two rapid ultrafiltration-based methods for SARS-CoV-2 concentration from wastewater. Science of the Total Environment, 2021, 768, 144786.	8.0	64
4	NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods, 2021, 10, 1820.	4.3	12
5	Monitoring waves of the COVID-19 pandemic: Inferences from WWTPs of different sizes. Science of the Total Environment, 2021, 787, 147463.	8.0	47
6	Exploring the diversity of coronavirus in sewage during COVID-19 pandemic: Don't miss the forest for the trees. Science of the Total Environment, 2021, 800, 149562.	8.0	14
7	Looking for a needle in a haystack. SARS-CoV-2 variant characterization in sewage. Current Opinion in Environmental Science and Health, 2021, 24, 100308.	4.1	5
8	Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. International Journal of Hygiene and Environmental Health, 2020, 224, 113440.	4.3	29
9	Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures. Science of the Total Environment, 2020, 710, 136298.	8.0	45
10	Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science and Health, 2020, 17, 21-28.	4.1	78
11	Recent trends on methods for the concentration of viruses from water samples. Current Opinion in Environmental Science and Health, 2020, 16, 7-13.	4.1	56
12	Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens. Science of the Total Environment, 2020, 713, 136604.	8.0	58
13	Occurrence of pathogens in the river–groundwater interface in a losing river stretch (Besòs River) Tj ETQq1 1	0.784314 8.0	rgBT /Over
14	VirWaTest, A Point-of-Use Method for the Detection of Viruses in Water Samples. Journal of Visualized Experiments, 2019, , .	0.3	0
15	Exploring the use of tertiary reclaimed water in dairy cattle production. Journal of Cleaner Production, 2019, 229, 964-973.	9.3	7
16	Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Research, 2019, 153, 91-99.	11.3	52
17	Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. Science of the Total Environment, 2018, 618, 870-880.	8.0	116
18	Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city. Science of the Total Environment, 2018, 645, 1334-1343.	8.0	38

Marta Rusiñol

#	Article	IF	CITATIONS
19	Viral Concentration and Amplification from Human Serum Samples Prior to Application of Next-Generation Sequencing Analysis. Methods in Molecular Biology, 2018, 1838, 173-188.	0.9	10
20	Human-, Ovine-, and Bovine-Specific Viral Source Tracking Tools to Discriminate Between the Major Fecal Sources in Agricultural Waters. Food and Environmental Virology, 2016, 8, 34-45.	3.4	14
21	Evaluation of the microbiological quality of reclaimed water produced from a lagooning system. Environmental Science and Pollution Research, 2016, 23, 16816-16833.	5.3	27
22	Development of improved low-cost ceramic water filters for viral removal in the Haitian context. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 28-38.	1.8	11
23	Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management. Journal of Environmental Management, 2015, 159, 58-67.	7.8	51
24	Specific Viruses Present in Polluted Groundwater Are Indicative of the Source of Nitrates and Faecal Contamination in Agricultural Areas. Handbook of Environmental Chemistry, 2015, , 1-24.	0.4	0
25	Erratum to "Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples― BioMed Research International, 2014, 2014, 1-2.	1.9	0
26	Adenovirus and Norovirus Contaminants in Commercially Distributed Shellfish. Food and Environmental Virology, 2014, 6, 31-41.	3.4	27
27	Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Research, 2014, 59, 119-129.	11.3	97
28	Environmental Effectors on the Inactivation of Human Adenoviruses in Water. Food and Environmental Virology, 2013, 5, 203-214.	3.4	24
29	Description of a novel viral tool to identify and quantify ovine faecal pollution in the environment. Science of the Total Environment, 2013, 458-460, 355-360.	8.0	11
30	Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Research, 2013, 47, 2797-2810.	11.3	92
31	Effect of temperature and sunlight on the stability of human adenoviruses and MS2 as fecal contaminants on fresh produce surfaces. International Journal of Food Microbiology, 2013, 164, 128-134.	4.7	23
32	Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples. BioMed Research International, 2013, 2013, 1-11.	1.9	56
33	A Novel Tool for Specific Detection and Quantification of Chicken/Turkey Parvoviruses To Trace Poultry Fecal Contamination in the Environment. Applied and Environmental Microbiology, 2012, 78, 7496-7499.	3.1	28
34	Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Science and Technology, 2012, 66, 2517-2523.	2.5	49
35	Cost-Effective Applications of Human and Animal Viruses as Microbial Source-Tracking Tools in Surface Waters and Growdwater. Special Publication - Royal Society of Chemistry, 2012, , 90-101.	0.0	1
36	Cost-effective Method for Microbial Source Tracking Using Specific Human and Animal Viruses. Journal of Visualized Experiments, 2011, , .	0.3	7

#	Article	IF	CITATIONS
37	Summary of Excreted and Waterborne Viruses. , 0, , .		9