
Marta Rusiñol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528672/publications.pdf Version: 2024-02-01

Μλατλ ΡιιςιÃ+Οι

#	Article	IF	CITATIONS
1	Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. Science of the Total Environment, 2022, 805, 149877.	8.0	153
2	Metagenomics for the study of viruses in urban sewage as a tool for public health surveillance. Science of the Total Environment, 2018, 618, 870-880.	8.0	116
3	Application of human and animal viral microbial source tracking tools in fresh and marine waters from five different geographical areas. Water Research, 2014, 59, 119-129.	11.3	97
4	Detection and quantification of classic and emerging viruses by skimmed-milk flocculation and PCR in river water from two geographical areas. Water Research, 2013, 47, 2797-2810.	11.3	92
5	Concentration methods for the quantification of coronavirus and other potentially pandemic enveloped virus from wastewater. Current Opinion in Environmental Science and Health, 2020, 17, 21-28.	4.1	78
6	Evaluation of two rapid ultrafiltration-based methods for SARS-CoV-2 concentration from wastewater. Science of the Total Environment, 2021, 768, 144786.	8.0	64
7	Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens. Science of the Total Environment, 2020, 713, 136604.	8.0	58
8	Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples. BioMed Research International, 2013, 2013, 1-11.	1.9	56
9	Recent trends on methods for the concentration of viruses from water samples. Current Opinion in Environmental Science and Health, 2020, 16, 7-13.	4.1	56
10	Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Research, 2019, 153, 91-99.	11.3	52
11	Evidence of viral dissemination and seasonality in a Mediterranean river catchment: Implications for water pollution management. Journal of Environmental Management, 2015, 159, 58-67.	7.8	51
12	Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Science and Technology, 2012, 66, 2517-2523.	2.5	49
13	Monitoring waves of the COVID-19 pandemic: Inferences from WWTPs of different sizes. Science of the Total Environment, 2021, 787, 147463.	8.0	47
14	Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures. Science of the Total Environment, 2020, 710, 136298.	8.0	45
15	Quito's virome: Metagenomic analysis of viral diversity in urban streams of Ecuador's capital city. Science of the Total Environment, 2018, 645, 1334-1343.	8.0	38
16	Metagenomic analysis of viruses, bacteria and protozoa in irrigation water. International Journal of Hygiene and Environmental Health, 2020, 224, 113440.	4.3	29
17	A Novel Tool for Specific Detection and Quantification of Chicken/Turkey Parvoviruses To Trace Poultry Fecal Contamination in the Environment. Applied and Environmental Microbiology, 2012, 78, 7496-7499.	3.1	28
18	Adenovirus and Norovirus Contaminants in Commercially Distributed Shellfish. Food and Environmental Virology, 2014, 6, 31-41.	3.4	27

Marta Rusiñol

#	Article	IF	CITATIONS
19	Evaluation of the microbiological quality of reclaimed water produced from a lagooning system. Environmental Science and Pollution Research, 2016, 23, 16816-16833.	5.3	27
20	Environmental Effectors on the Inactivation of Human Adenoviruses in Water. Food and Environmental Virology, 2013, 5, 203-214.	3.4	24
21	Effect of temperature and sunlight on the stability of human adenoviruses and MS2 as fecal contaminants on fresh produce surfaces. International Journal of Food Microbiology, 2013, 164, 128-134.	4.7	23
22	Human-, Ovine-, and Bovine-Specific Viral Source Tracking Tools to Discriminate Between the Major Fecal Sources in Agricultural Waters. Food and Environmental Virology, 2016, 8, 34-45.	3.4	14
23	Exploring the diversity of coronavirus in sewage during COVID-19 pandemic: Don't miss the forest for the trees. Science of the Total Environment, 2021, 800, 149562.	8.0	14
24	NGS Techniques Reveal a High Diversity of RNA Viral Pathogens and Papillomaviruses in Fresh Produce and Irrigation Water. Foods, 2021, 10, 1820.	4.3	12
25	Description of a novel viral tool to identify and quantify ovine faecal pollution in the environment. Science of the Total Environment, 2013, 458-460, 355-360.	8.0	11
26	Development of improved low-cost ceramic water filters for viral removal in the Haitian context. Journal of Water Sanitation and Hygiene for Development, 2015, 5, 28-38.	1.8	11
27	Viral Concentration and Amplification from Human Serum Samples Prior to Application of Next-Generation Sequencing Analysis. Methods in Molecular Biology, 2018, 1838, 173-188.	0.9	10
28	Occurrence of pathogens in the river–groundwater interface in a losing river stretch (Besòs River) Tj ETQqO	0 0 rgBT /0 8:0	Overlock 10 Tf
29	Summary of Excreted and Waterborne Viruses. , 0, , .		9
30	Cost-effective Method for Microbial Source Tracking Using Specific Human and Animal Viruses. Journal of Visualized Experiments, 2011, , .	0.3	7
31	Exploring the use of tertiary reclaimed water in dairy cattle production. Journal of Cleaner Production, 2019, 229, 964-973.	9.3	7
32	Looking for a needle in a haystack. SARS-CoV-2 variant characterization in sewage. Current Opinion in Environmental Science and Health, 2021, 24, 100308.	4.1	5
33	Evaluation of a virus concentration method based on ultrafiltration and wet foam elution for studying viruses from large-volume water samples. Science of the Total Environment, 2022, 829, 154431.	8.0	5
34	Cost-Effective Applications of Human and Animal Viruses as Microbial Source-Tracking Tools in Surface Waters and Growdwater. Special Publication - Royal Society of Chemistry, 2012, , 90-101.	0.0	1
35	Erratum to "Quantification of Human and Animal Viruses to Differentiate the Origin of the Fecal Contamination Present in Environmental Samples― BioMed Research International, 2014, 2014, 1-2.	1.9	Ο
36	Specific Viruses Present in Polluted Groundwater Are Indicative of the Source of Nitrates and Faecal Contamination in Agricultural Areas. Handbook of Environmental Chemistry, 2015, , 1-24.	0.4	0

#	Article	IF	CITATIONS
37	VirWaTest, A Point-of-Use Method for the Detection of Viruses in Water Samples. Journal of Visualized Experiments, 2019, , .	0.3	0