
Kevin D Tipton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5528192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Making Sense of Muscle Protein Synthesis: A Focus on Muscle Growth During Resistance Training. International Journal of Sport Nutrition and Exercise Metabolism, 2022, 32, 49-61.	2.1	12
2	A hypoenergetic diet with decreased protein intake does not reduce lean body mass in trained females. European Journal of Applied Physiology, 2021, 121, 771-781.	2.5	2
3	Isolated Leucine and Branched-Chain Amino Acid Supplementation for Enhancing Muscular Strength and Hypertrophy: A Narrative Review. International Journal of Sport Nutrition and Exercise Metabolism, 2021, 31, 292-301.	2.1	24
4	Evaluating the Leucine Trigger Hypothesis to Explain the Post-prandial Regulation of Muscle Protein Synthesis in Young and Older Adults: A Systematic Review. Frontiers in Nutrition, 2021, 8, 685165.	3.7	26
5	Human skeletal muscle metabolic responses to 6 days of highâ€fat overfeeding are associated with dietary nâ€3PUFA content and muscle oxidative capacity. Physiological Reports, 2020, 8, e14529.	1.7	4
6	Skipping Breakfast Before Exercise Creates a More Negative 24-hour Energy Balance: A Randomized Controlled Trial in Healthy Physically Active Young Men. Journal of Nutrition, 2019, 149, 1326-1334.	2.9	14
7	Influence of Fish Oil-Derived n-3 Fatty Acid Supplementation on Changes in Body Composition and Muscle Strength During Short-Term Weight Loss in Resistance-Trained Men. Frontiers in Nutrition, 2019, 6, 102.	3.7	11
8	Assessing the Role of Muscle Protein Breakdown in Response to Nutrition and Exercise in Humans. Sports Medicine, 2018, 48, 53-64.	6.5	100
9	Adding Fish Oil to Whey Protein, Leucine, and Carbohydrate Over a Six-Week Supplementation Period Attenuates Muscle Soreness Following Eccentric Exercise in Competitive Soccer Players. International Journal of Sport Nutrition and Exercise Metabolism, 2018, 28, 26-36.	2.1	25
10	A bedtime milk snack does not impact RMR, substrate utilisation and appetite the following morning in mildly overweight males. British Journal of Nutrition, 2018, 119, 1355-1365.	2.3	10
11	Metabolic Responses to Carbohydrate Ingestion during Exercise: Associations between Carbohydrate Dose and Endurance Performance. Nutrients, 2018, 10, 37.	4.1	22
12	Preexercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1062-E1074.	3.5	34
13	Changes in Body Composition and Performance With Supplemental HMBâ€FA+ATP. Journal of Strength and Conditioning Research, 2017, 31, e71-e72.	2.1	16
14	Branched-Chain Amino Acid Ingestion Stimulates Muscle Myofibrillar Protein Synthesis following Resistance Exercise in Humans. Frontiers in Physiology, 2017, 8, 390.	2.8	97
15	Protein Considerations for Optimising Skeletal Muscle Mass in Healthy Young and Older Adults. Nutrients, 2016, 8, 181.	4.1	95
16	Effect of Intensive Training on Mood With No Effect on Brain-Derived Neurotrophic Factor. International Journal of Sports Physiology and Performance, 2016, 11, 824-830.	2.3	8
17	The response of muscle protein synthesis following wholeâ€body resistance exercise is greater following 40Âg than 20Âg of ingested whey protein. Physiological Reports, 2016, 4, e12893.	1.7	144
18	Exceptional body composition changes attributed to collagen peptide supplementation and resistance training in older sarcopenic men. British Journal of Nutrition, 2016, 116, 569-570.	2.3	15

#	Article	IF	CITATIONS
19	Fish oil supplementation suppresses resistance exercise and feeding-induced increases in anabolic signaling without affecting myofibrillar protein synthesis in young men. Physiological Reports, 2016, 4, e12715.	1.7	72
20	The Ingestion of 39 or 64 g·hrâ ``1 of Carbohydrate is Equally Effective at Improving Endurance Exercise Performance in Cyclists. International Journal of Sport Nutrition and Exercise Metabolism, 2015, 25, 285-292.	2.1	12
21	Commentaries on Viewpoint: What is the relationship between acute measure of muscle protein synthesis and changes in muscle mass?. Journal of Applied Physiology, 2015, 118, 498-503.	2.5	14
22	Nutritional Support for Exercise-Induced Injuries. Sports Medicine, 2015, 45, 93-104.	6.5	74
23	Protein Ingestion to Stimulate Myofibrillar Protein Synthesis Requires Greater Relative Protein Intakes in Healthy Older Versus Younger Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 57-62.	3.6	558
24	Topic 3. Protein requirements and recommendations for athletes: arguments for practical recommendations. , 2015, , 215-221.		0
25	Nutrition and Training Adaptations in Aquatic Sports. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 414-424.	2.1	25
26	Dietary Supplements for Aquatic Sports. International Journal of Sport Nutrition and Exercise Metabolism, 2014, 24, 437-449.	2.1	16
27	Increased net muscle protein balance in response to simultaneous and separate ingestion of carbohydrate and essential amino acids following resistance exercise. Applied Physiology, Nutrition and Metabolism, 2014, 39, 329-339.	1.9	7
28	Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clinical Nutrition, 2014, 33, 929-936.	5.0	1,108
29	Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 90, 199-206.	2.2	96
30	Resistance training increases skeletal muscle oxidative capacity and net intramuscular triglyceride breakdown in type I and II fibres of sedentary males. Experimental Physiology, 2014, 99, 894-908.	2.0	33
31	Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. American Journal of Clinical Nutrition, 2014, 99, 86-95.	4.7	385
32	Effect of Resistance Training on Microvascular Density and eNOS Content in Skeletal Muscle of Sedentary Men. Microcirculation, 2014, 21, 738-746.	1.8	15
33	High dietary protein restores overreaching induced impairments in leukocyte trafficking and reduces the incidence of upper respiratory tract infection in elite cyclists. Brain, Behavior, and Immunity, 2014, 39, 211-219.	4.1	41
34	Dietary Protein for Muscle Hypertrophy. Nestle Nutrition Institute Workshop Series, 2013, 76, 73-84.	0.1	30
35	Dietary Strategies to Attenuate Muscle Loss during Recovery from Injury. Nestle Nutrition Institute Workshop Series, 2013, 75, 51-61.	0.1	10
36	Concluding Remarks: Nutritional Strategies to Support the Adaptive Response to Prolonged Exercise Training. Nestle Nutrition Institute Workshop Series, 2013, 75, 135-141.	0.1	7

#	Article	IF	CITATIONS
37	Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. Journal of Physiology, 2013, 591, 657-675.	2.9	153
38	Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. Journal of Physiology, 2013, 591, 641-656.	2.9	169
39	High-Intensity Training Reduces CD8+ T-cell Redistribution in Response to Exercise. Medicine and Science in Sports and Exercise, 2012, 44, 1689-1697.	0.4	34
40	Preexercise Aminoacidemia and Muscle Protein Synthesis after Resistance Exercise. Medicine and Science in Sports and Exercise, 2012, 44, 1968-1977.	0.4	53
41	Preferential utilization of perilipin 2â€associated intramuscular triglycerides during 1 h of moderateâ€intensity enduranceâ€type exercise. Experimental Physiology, 2012, 97, 970-980.	2.0	51
42	Efficacy and consequences of very-high-protein diets for athletes and exercisers. Proceedings of the Nutrition Society, 2011, 70, 205-214.	1.0	56
43	Effect of Increased Dietary Protein on Tolerance to Intensified Training. Medicine and Science in Sports and Exercise, 2011, 43, 598-607.	0.4	44
44	The influence of carbohydrate–protein coâ€ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. Journal of Physiology, 2011, 589, 4011-4025.	2.9	121
45	Beneficial Effects of Resistance Exercise on Glycemic Control Are Not Further Improved by Protein Ingestion. PLoS ONE, 2011, 6, e20613.	2.5	21
46	Increased Protein Intake Reduces Lean Body Mass Loss during Weight Loss in Athletes. Medicine and Science in Sports and Exercise, 2010, 42, 326-337.	0.4	220
47	Essential Amino Acids for Muscle Protein Accretion. Strength and Conditioning Journal, 2010, 32, 87-92.	1.4	2
48	Branched-Chain Amino Acid Ingestion Can Ameliorate Soreness from Eccentric Exercise. Medicine and Science in Sports and Exercise, 2010, 42, 962-970.	0.4	123
49	Nutrition for Acute Exercise-Induced Injuries. Annals of Nutrition and Metabolism, 2010, 57, 43-53.	1.9	23
50	No Effect of Carbohydrate-Protein on Cycling Performance and Indices of Recovery. Medicine and Science in Sports and Exercise, 2010, 42, 1140-1148.	0.4	52
51	Legal Nutritional Boosting for Cycling. Current Sports Medicine Reports, 2009, 8, 186-191.	1.2	9
52	Measuring synthesis rates of different proteins – clues to training adaptations. Journal of Physiology, 2009, 587, 721-721.	2.9	2
53	Stimulation of muscle anabolism by resistance exercise and ingestion of leucine plus protein. Applied Physiology, Nutrition and Metabolism, 2009, 34, 151-161.	1.9	66
54	Protein Plus Carbohydrate Does Not Enhance 60-km Time-Trial Performance. International Journal of Sport Nutrition and Exercise Metabolism, 2009, 19, 335-339.	2.1	6

#	Article	IF	CITATIONS
55	Resistance Exercise Increases Postprandial Muscle Protein Synthesis in Humans. Medicine and Science in Sports and Exercise, 2009, 41, 144-154.	0.4	61
56	Protein for adaptations to exercise training. European Journal of Sport Science, 2008, 8, 107-118.	2.7	24
57	Sport and exercise nutrition: from theory to practice. European Journal of Sport Science, 2008, 8, 55-55.	2.7	Ο
58	Postexercise Muscle Glycogen Synthesis with Combined Glucose and Fructose Ingestion. Medicine and Science in Sports and Exercise, 2008, 40, 1789-1794.	0.4	42
59	Improving muscle mass: response of muscle metabolism to exercise, nutrition and anabolic agents. Essays in Biochemistry, 2008, 44, 85-98.	4.7	51
60	Role of Protein and Hydrolysates before Exercise. International Journal of Sport Nutrition and Exercise Metabolism, 2007, 17, S77-S86.	2.1	12
61	Protein Requirements and Recommendations for Athletes: Relevance of Ivory Tower Arguments for Practical Recommendations. Clinics in Sports Medicine, 2007, 26, 17-36.	1.8	83
62	Nutrition for the sprinter. Journal of Sports Sciences, 2007, 25, S5-S15.	2.0	39
63	Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E71-E76.	3.5	235
64	Promoting training adaptations through nutritional interventions. Journal of Sports Sciences, 2006, 24, 709-721.	2.0	112
65	Milk Ingestion Stimulates Net Muscle Protein Synthesis following Resistance Exercise. Medicine and Science in Sports and Exercise, 2006, 38, 667-674.	0.4	181
66	Incidence of associated events during the performance of invasive procedures in healthy human volunteers. Journal of Applied Physiology, 2005, 98, 1202-1206.	2.5	17
67	Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E678-E683.	3.5	70
68	The response of intracellular signaling and muscle-protein metabolism to nutrition and exercise. European Journal of Sport Science, 2005, 5, 107-121.	2.7	10
69	Leg glucose and protein metabolism during an acute bout of resistance exercise in humans. Journal of Applied Physiology, 2004, 97, 1379-1386.	2.5	36
70	Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Applied Physiology, 2004, 96, 674-678.	2.5	190
71	Protein and amino acids for athletes. Journal of Sports Sciences, 2004, 22, 65-79.	2.0	205
72	Ingestion of Casein and Whey Proteins Result in Muscle Anabolism after Resistance Exercise. Medicine and Science in Sports and Exercise, 2004, 36, 2073-2081.	0.4	273

#	Article	IF	CITATIONS
73	Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E76-E89.	3.5	160
74	Independent and Combined Effects of Amino Acids and Glucose after Resistance Exercise. Medicine and Science in Sports and Exercise, 2003, 35, 449-455.	0.4	231
75	Essential amino acids and muscle protein recovery from resistance exercise. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E648-E657.	3.5	346
76	Resistance-training-induced adaptations in skeletal muscle protein turnover in the fed state. Canadian Journal of Physiology and Pharmacology, 2002, 80, 1045-1053.	1.4	140
77	Testosterone administration to older men improves muscle function: molecular and physiological mechanisms. American Journal of Physiology - Endocrinology and Metabolism, 2002, 282, E601-E607.	3.5	445
78	Muscle Protein Metabolism in the Elderly: Influence of Exercise and Nutrition. Applied Physiology, Nutrition, and Metabolism, 2001, 26, 588-606.	1.7	25
79	Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E197-E206.	3.5	411
80	Gender differences in protein metabolism. Current Opinion in Clinical Nutrition and Metabolic Care, 2001, 4, 493-498.	2.5	86
81	Exercise, Protein Metabolism, and Muscle Growth. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, 109-132.	2.1	164
82	An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise. Journal of Applied Physiology, 2000, 88, 386-392.	2.5	445
83	PROTEIN ANDAMINOACIDMETABOLISMDURING ANDAFTEREXERCISE AND THEEFFECTS OFNUTRITION. Annual Review of Nutrition, 2000, 20, 457-483.	10.1	282
84	Postexercise net protein synthesis in human muscle from orally administered amino acids. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E628-E634.	3.5	325
85	Nonessential amino acids are not necessary to stimulate net muscle protein synthesis in healthy volunteers. Journal of Nutritional Biochemistry, 1999, 10, 89-95.	4.2	202
86	Exercise-induced changes in protein metabolism. Acta Physiologica Scandinavica, 1998, 162, 377-387.	2.2	92
87	Testosterone injection stimulates net protein synthesis but not tissue amino acid transport. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E864-E871.	3.5	143
88	Exogenous amino acids stimulate net muscle protein synthesis in the elderly Journal of Clinical Investigation, 1998, 101, 2000-2007.	8.2	340
89	Resistance exercise maintains skeletal muscle protein synthesis during bed rest. Journal of Applied Physiology, 1997, 82, 807-810.	2.5	192
90	Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise. Journal of Applied Physiology, 1996, 81, 2034-2038.	2.5	98

#	Article	IF	CITATIONS
91	Thème 3. Les besoins en protéines des athlètesÂ: discussion et recommandations pratiques. , 0, , 189-197.		0