Hengming Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/552768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2022, 67, 309-341.	12.9	67
2	Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Letters, 2022, 7, 1043-1065.	17.4	247
3	Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
4	Interfacial Design to Enhance Photocatalytic Hydrogen Evolution via Optimizing Energy and Mass Flows. ACS Applied Materials & Interfaces, 2021, 13, 21207-21216.	8.0	9
5	Dual-layered up-conversion films with tunable multi-peaks spectrum for efficient photocatalytic degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 417, 113360.	3.9	2
6	Effective solar driven H2 production by Mn0.5Cd0.5Se/g-C3N4 S-scheme heterojunction photocatalysts. International Journal of Hydrogen Energy, 2021, 46, 32514-32522.	7.1	22
7	Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production. Journal of Materials Science and Technology, 2021, 87, 207-215.	10.7	18
8	Carbon ring and molecular scaffold co-doped g-C3N4 heterostructural nanosheets for highly efficient hydrogen evolution. Materials Research Bulletin, 2021, 144, 111482.	5.2	5
9	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	16.0	62
10	Hollow structured cathode materials for rechargeable batteries. Science Bulletin, 2020, 65, 496-512.	9.0	30
11	MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Materials, 2020, 26, 550-559.	18.0	108
12	Reddish GaN:ZnO photoelectrode for improved photoelectrochemical solar water splitting. Journal of Chemical Physics, 2020, 153, 024706.	3.0	5
13	Sustainable Internal Electric Field for Enhanced Photocatalysis: From Material Design to Energy Utilization. Journal of Physical Chemistry Letters, 2020, 11, 7407-7416.	4.6	31
14	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 7230-7234.	13.8	221
15	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 7297-7301.	2.0	55
16	Construction of Infraredâ€Lightâ€Responsive Photoinduced Carriers Driver for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2020, 32, e1906361.	21.0	131
17	Photocatalysts: Construction of Selfâ€Healing Internal Electric Field for Sustainably Enhanced Photocatalysis (Adv. Funct. Mater. 16/2019). Advanced Functional Materials, 2019, 29, 1970105.	14.9	2
18	Construction of Selfâ€Healing Internal Electric Field for Sustainably Enhanced Photocatalysis. Advanced Functional Materials, 2019, 29, 1807934.	14.9	64

HENGMING HUANG

#	Article	IF	CITATIONS
19	Flowing water enabled piezoelectric potential of flexible composite film for enhanced photocatalytic performance. Chemical Engineering Journal, 2018, 347, 263-272.	12.7	49
20	Photocatalysis of composite film PDMS-PMN-PT@TiO2 greatly improved via spatial electric field. Applied Surface Science, 2017, 403, 9-14.	6.1	24
21	Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H ₂ Evolution in CdS Nanorods. Nano Letters, 2017, 17, 3803-3808.	9.1	225
22	Greatly enhanced photocatalytic activity by organic flexible piezoelectric PVDF induced spatial electric field. Catalysis Science and Technology, 2017, 7, 5594-5601.	4.1	42
23	Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization. Polymers, 2017, 9, 181.	4.5	4
24	The Potential of Carbon-based Materials for Photocatalytic Application. Current Organic Chemistry, 2014, 18, 1346-1364.	1.6	12
25	Uniform NaYF4:Yb, Tm hexagonal submicroplates: Controlled synthesis and enhanced UV and blue upconversion luminescence. Materials Research Bulletin, 2013, 48, 300-304.	5.2	22
26	Controlled Synthesis and Upconversion Luminescence Properties of Yb ³⁺ -Tm ³⁺ Codoped NaYF ₄ Hexagonal Submicroplates. Advanced Materials Research, 0, 528, 117-120.	0.3	1
27	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	10.4	12