Patricia Horcajada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5527621/publications.pdf Version: 2024-02-01

		9775	5384
159	29,948	73	164
papers	citations	h-index	g-index
173	173	173	20949
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cracking the immune fingerprint of metal–organic frameworks. Chemical Science, 2022, 13, 934-944.	3.7	16
2	Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chemical Society Reviews, 2022, 51, 464-484.	18.7	144
3	Pushing the Limits on the Intestinal Crossing of Metal–Organic Frameworks: An <i>Ex Vivo</i> and <i>In Vivo</i> Detailed Study. ACS Nano, 2022, 16, 5830-5838.	7.3	13
4	Metal–Organic Frameworks in Agriculture. ACS Applied Materials & Interfaces, 2022, 14, 16983-17007.	4.0	53
5	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials, 2022, 34,	11.1	82
6	Nickel phosphonate MOF as efficient water splitting photocatalyst. Nano Research, 2021, 14, 450-457.	5.8	68
7	Reversible dehydration–hydration process in stable bismuth-based hybrid perovskites. Journal of Materials Chemistry C, 2021, 9, 11358-11367.	2.7	12
8	Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water. Faraday Discussions, 2021, 231, 356-370.	1.6	9
9	Metal–organic frameworks for the removal of the emerging contaminant atenolol under real conditions. Dalton Transactions, 2021, 50, 2493-2500.	1.6	11
10	Understanding the Incorporation and Release of Salicylic Acid in Metalâ€Organic Frameworks for Topical Administration. European Journal of Inorganic Chemistry, 2021, 2021, 1325-1331.	1.0	6
11	Ion-Exchanged UPG-1 as Potential Electrolyte for Fuel Cells. Inorganic Chemistry, 2021, 60, 11803-11812.	1.9	5
12	Fully supercritical CO2 preparation of a nanostructured MOF composite with application in cutaneous drug delivery. Journal of Supercritical Fluids, 2021, 178, 105379.	1.6	12
13	Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow. Journal of Materials Chemistry A, 2021, 9, 15704-15713.	5.2	19
14	Improving the genistein oral bioavailability <i>via</i> its formulation into the metal–organic framework MIL-100(Fe). Journal of Materials Chemistry B, 2021, 9, 2233-2239.	2.9	22
15	A Novel Porous Tiâ€Squarate as Efficient Photocatalyst in the Overall Water Splitting Reaction under Simulated Sunlight Irradiation. Advanced Materials, 2021, 33, e2106627.	11.1	35
16	Microencapsulated Isoniazid-Loaded Metal–Organic Frameworks for Pulmonary Administration of Antituberculosis Drugs. Molecules, 2021, 26, 6408.	1.7	9
17	In deep evaluation of the neurotoxicity of orally administered TiO2 nanoparticles. Brain Research Bulletin, 2020, 155, 119-128.	1.4	25
18	Novel Antibacterial Azelaic Acid BioMOFs. Crystal Growth and Design, 2020, 20, 370-382.	1.4	37

#	Article	IF	CITATIONS
19	Modulation of metal-azolate frameworks for the tunable release of encapsulated glycosaminoglycans. Chemical Science, 2020, 11, 10835-10843.	3.7	44
20	Combined Cutaneous Therapy Using Biocompatible Metal-Organic Frameworks. Nanomaterials, 2020, 10, 2296.	1.9	15
21	Proton Conductive Zr-Phosphonate UPG-1—Aminoacid Insertion as Proton Carrier Stabilizer. Molecules, 2020, 25, 3519.	1.7	7
22	Bis-3,5-Diamino-1,2,4-Triazolyl-1,2,4,5-Tetrazine: From Insensitive High Energy Density Materials to Small Molecule Organic Semiconductors. Crystal Growth and Design, 2020, 20, 6510-6518.	1.4	3
23	A Robust and Biocompatible Bismuth Ellagate MOF Synthesized Under Green Ambient Conditions. Journal of the American Chemical Society, 2020, 142, 16795-16804.	6.6	115
24	Metal–Organic Framework Microsphere Formulation for Pulmonary Administration. ACS Applied Materials & Interfaces, 2020, 12, 25676-25682.	4.0	20
25	A new mononuclear nickel complex with 5,5′-dimethyl-2,2′-bipyridine: Synthesis, structural investigation and catalytic properties. Journal of Molecular Structure, 2020, 1219, 128572.	1.8	7
26	Phase-Selective Microwave Assisted Synthesis of Iron(III) Aminoterephthalate MOFs. Materials, 2020, 13, 1469.	1.3	22
27	A Semiconducting Bi ₂ O ₂ (C ₄ O ₄) Coordination Polymer Showing a Photoelectric Response. Inorganic Chemistry, 2020, 59, 3406-3416.	1.9	12
28	Metal–Organic Frameworks for the Removal of Emerging Organic Contaminants in Water. Chemical Reviews, 2020, 120, 8378-8415.	23.0	660
29	Biocompatible iron(<scp>iii</scp>) carboxylate metal–organic frameworks as promising RNA nanocarriers. Nanoscale, 2020, 12, 4839-4845.	2.8	47
30	An Ag-loaded photoactive nano-metal organic framework as a promising biofilm treatment. Acta Biomaterialia, 2019, 97, 490-500.	4.1	40
31	A new proton-conducting Bi-carboxylate framework. Dalton Transactions, 2019, 48, 11181-11185.	1.6	20
32	Ti-Based nanoMOF as an Efficient Oral Therapeutic Agent. ACS Applied Materials & Interfaces, 2019, 11, 22188-22193.	4.0	32
33	The crystal structure of visible light absorbing piezoelectric semiconductor SrNb ₂ V ₂ O ₁₁ revisited: high-resolution X-ray diffraction, vibrational spectroscopy and computational study. Journal of Materials Chemistry C, 2019, 7, 5497-5505.	2.7	2
34	Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. Journal of Power Sources, 2019, 427, 299-308.	4.0	29
35	A highly conductive nanostructured PEDOT polymer confined into the mesoporous MIL-100(Fe). Dalton Transactions, 2019, 48, 9807-9817.	1.6	30
36	Metal-organic frameworks: A novel platform for combined advanced therapies. Coordination Chemistry Reviews, 2019, 388, 202-226.	9.5	197

#	Article	IF	CITATIONS
37	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082.	7.2	103
38	Covalent and Selective Grafting of Polyethylene Glycol Brushes at the Surface of ZIF-8 for the Processing of Membranes for Pervaporation. ACS Sustainable Chemistry and Engineering, 2019, 7, 6629-6639.	3.2	60
39	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	1.6	15
40	A Nonlinear Optically Active Bismuth–Camphorate Coordination Polymer. European Journal of Inorganic Chemistry, 2018, 2018, 2437-2443.	1.0	12
41	Toward Understanding Drug Incorporation and Delivery from Biocompatible Metal–Organic Frameworks in View of Cutaneous Administration. ACS Omega, 2018, 3, 2994-3003.	1.6	128
42	Efficient biodiesel production using a lipase@ZIF-67 nanobioreactor. Chemical Engineering Journal, 2018, 334, 1233-1241.	6.6	175
43	A robust monolithic metal–organic framework with hierarchical porosity. Chemical Communications, 2018, 54, 13088-13091.	2.2	46
44	Aqueous Synthesis of Copper(II)-Imidazolate Nanoparticles. Inorganic Chemistry, 2018, 57, 12056-12065.	1.9	6
45	Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 132, 11-18.	2.0	36
46	Metal–Organic Frameworks as Efficient Oral Detoxifying Agents. Journal of the American Chemical Society, 2018, 140, 9581-9586.	6.6	74
47	GraftFast Surface Engineering to Improve MOF Nanoparticles Furtiveness. Small, 2018, 14, e1801900.	5.2	69
48	Metal organic frameworks based on bioactive components. Journal of Materials Chemistry B, 2017, 5, 2560-2573.	2.9	180
49	Chitosan-coated mesoporous MIL-100(Fe) nanoparticles as improved bio-compatible oral nanocarriers. Scientific Reports, 2017, 7, 43099.	1.6	114
50	Crystal structure dependent in vitro antioxidant activity of biocompatible calcium gallate MOFs. Journal of Materials Chemistry B, 2017, 5, 2813-2822.	2.9	31
51	Towards improved HIV-microbicide activity through the co-encapsulation of NRTI drugs in biocompatible metal organic framework nanocarriers. Journal of Materials Chemistry B, 2017, 5, 8563-8569.	2.9	29
52	A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie, 2017, 129, 15771-15775.	1.6	87
53	A Smart Metal–Organic Framework Nanomaterial for Lung Targeting. Angewandte Chemie - International Edition, 2017, 56, 15565-15569.	7.2	118

4.38 The Situation of Metal-Organic Frameworks in Biomedicine â⁻†., 2017, , 719-749.

12

#	Article	IF	CITATIONS
55	Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. CheM, 2017, 3, 303-322.	5.8	72
56	Nanometric MIL-125-NH2 Metal–Organic Framework as a Potential Nerve Agent Antidote Carrier. Nanomaterials, 2017, 7, 321.	1.9	71
57	A Promising Catalytic and Theranostic Agent Obtained through the Inâ€Situ Synthesis of Au Nanoparticles with a Reduced Polyoxometalate Incorporated within Mesoporous MILâ€101. European Journal of Inorganic Chemistry, 2016, 2016, 4387-4394.	1.0	17
58	3D Reconstruction and Porosity Study of a Hierarchical Porous Monolithic Metal Organic Framework by FIB-SEM Nanotomography. Microscopy and Microanalysis, 2016, 22, 4-5.	0.2	1
59	Biocompatible polymer–metal–organic framework composite patches for cutaneous administration of cosmetic molecules. Journal of Materials Chemistry B, 2016, 4, 7031-7040.	2.9	34
60	Back Cover: A Promising Catalytic and Theranostic Agent Obtained through the Inâ€Situ Synthesis of Au Nanoparticles with a Reduced Polyoxometalate Incorporated within Mesoporous MILâ€101 (Eur. J. Inorg.) Tj ETC	2q01000 rgl	3T Øverlock 1
61	In vivo behavior of MIL-100 nanoparticles at early times after intravenous administration. International Journal of Pharmaceutics, 2016, 511, 1042-1047.	2.6	63
62	Ironâ€Based Metalâ€Organic Frameworks (MOF) as Photocatalysts for Radical and Cationic Polymerizations under Near UV and Visible LEDs (385–405 nm). Macromolecular Chemistry and Physics, 2016, 217, 2534-2540.	1.1	50
63	Impact of the Metal Centre and Functionalization on the Mechanical Behaviour of MILâ€53 Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2016, 2016, 4424-4429.	1.0	60
64	Influence of functionalization of terephthalate linker on the catalytic activity of UiO-66 for epoxide ring opening. Journal of Molecular Catalysis A, 2016, 425, 332-339.	4.8	58
65	Second harmonic generation microscopy reveals hidden polar organization in fluoride doped MIL-53(Fe). Dalton Transactions, 2016, 45, 4401-4406.	1.6	19
66	Synthesis of the biocompatible and highly stable MIL-127(Fe): from large scale synthesis to particle size control. CrystEngComm, 2016, 18, 4094-4101.	1.3	74
67	Exploration of the mechanical behavior of metal organic frameworks UiO-66(Zr) and MIL-125(Ti) and their NH ₂ functionalized versions. Dalton Transactions, 2016, 45, 4283-4288.	1.6	53
68	Nanoscaled Zinc Pyrazolate Metal–Organic Frameworks as Drug-Delivery Systems. Inorganic Chemistry, 2016, 55, 2650-2663.	1.9	147
69	Antineoplastic busulfan encapsulated in a metal organic framework nanocarrier: first in vivo results. Journal of Materials Chemistry B, 2016, 4, 585-588.	2.9	34
70	Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 2016, 307, 342-360.	9.5	476
71	Heparinâ€Engineered Mesoporous Iron Metalâ€Organic Framework Nanoparticles: Toward Stealth Drug Nanocarriers. Advanced Healthcare Materials, 2015, 4, 1246-1257.	3.9	187
72	Computational exploration of the gas adsorption on the iron tetracarboxylate metal-organic framework MIL-102. Molecular Simulation, 2015, 41, 1357-1370.	0.9	14

#	Article	IF	CITATIONS
73	Functionalization of Zr-based MOFs with alkyl and perfluoroalkyl groups: the effect on the water sorption behavior. Dalton Transactions, 2015, 44, 19687-19692.	1.6	20
74	A biocompatible porous Mg-gallate metal–organic framework as an antioxidant carrier. Chemical Communications, 2015, 51, 5848-5851.	2.2	98
75	A "green―strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Scientific Reports, 2015, 5, 7925.	1.6	139
76	Direct accessibility of mixed-metal (<scp>iii</scp> / <scp>ii</scp>) acid sites through the rational synthesis of porous metal carboxylates. Chemical Communications, 2015, 51, 10194-10197.	2.2	63
77	Impact of the Nature of the Organic Spacer on the Crystallization Kinetics of UiOâ€66(Zr)â€Type MOFs. Chemistry - A European Journal, 2015, 21, 7135-7143.	1.7	40
78	In vitro biocompatibility of mesoporous metal (III; Fe, Al, Cr) trimesate MOF nanocarriers. Journal of Materials Chemistry B, 2015, 3, 8279-8292.	2.9	96
79	Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. Journal of Materials Chemistry A, 2015, 3, 3294-3309.	5.2	174
80	A Zn azelate MOF: combining antibacterial effect. CrystEngComm, 2015, 17, 456-462.	1.3	134
81	Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide. APL Materials, 2014, 2, .	2.2	66
82	Separation of Hexane Isomers on Rigid Porous Metal Carboxylate-Based Metal—Organic Frameworks. Adsorption Science and Technology, 2014, 32, 475-488.	1.5	14
83	Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8. Microporous and Mesoporous Materials, 2014, 194, 146-156.	2.2	43
84	Cytotoxicity of nanoscaled metal–organic frameworks. Journal of Materials Chemistry B, 2014, 2, 262-271.	2.9	298
85	Effect of the ligand functionalization on the acid–base properties of flexible MOFs. Microporous and Mesoporous Materials, 2014, 195, 197-204.	2.2	16
86	Ligand Dynamics of Drug-Loaded Microporous Zirconium Terephthalates-Based Metal–Organic Frameworks: Impact of the Nature and Concentration of the Guest. Journal of Physical Chemistry C, 2014, 118, 1983-1989.	1.5	26
87	A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework. Advanced Functional Materials, 2014, 24, 7666-7673.	7.8	81
88	In Situ Energy-Dispersive X-ray Diffraction for the Synthesis Optimization and Scale-up of the Porous Zirconium Terephthalate UiO-66. Inorganic Chemistry, 2014, 53, 2491-2500.	1.9	157
89	Understanding the Colloidal Stability of the Mesoporous MIL-100(Fe) Nanoparticles in Physiological Media. Langmuir, 2014, 30, 5911-5920.	1.6	125
90	Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies. Chemical Communications, 2014, 50, 6872.	2.2	93

#	Article	IF	CITATIONS
91	Immobilization of Co-containing polyoxometalates in MIL-101(Cr): structural integrity versus chemical transformation. Dalton Transactions, 2014, 43, 12698-12705.	1.6	36
92	A simple and robust high-performance liquid chromatography coupled to a diode-array detector method for the analysis of genistein in mouse tissues. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 935, 47-53.	1.2	7
93	Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(iii) metal–organic framework MIL-100(Fe) nanoparticles. Journal of Materials Chemistry B, 2013, 1, 4231.	2.9	69
94	Rationale of Drug Encapsulation and Release from Biocompatible Porous Metal–Organic Frameworks. Chemistry of Materials, 2013, 25, 2767-2776.	3.2	412
95	Towards an Improved antiâ€HIV Activity of NRTI via Metal–Organic Frameworks Nanoparticles. Advanced Healthcare Materials, 2013, 2, 1630-1637.	3.9	130
96	A biocompatible calcium bisphosphonate coordination polymer: towards a metal-linker synergistic therapeutic effect?. CrystEngComm, 2013, 15, 9899.	1.3	49
97	Rationalization of the entrapping of bioactive molecules into a series of functionalized porous zirconium terephthalate MOFs. Journal of Materials Chemistry B, 2013, 1, 1101.	2.9	118
98	Hexane isomers sorption on a functionalized metal–organic framework. Microporous and Mesoporous Materials, 2013, 170, 251-258.	2.2	29
99	In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chemical Science, 2013, 4, 1597.	3.7	313
100	Nitric Oxide Adsorption and Delivery in Flexible MIL-88(Fe) Metal–Organic Frameworks. Chemistry of Materials, 2013, 25, 1592-1599.	3.2	243
101	Green scalable aerosol synthesis of porous metal–organic frameworks. Chemical Communications, 2013, 49, 3848.	2.2	103
102	A rare example of a porous Ca-MOF for the controlled release of biologically active NO. Chemical Communications, 2013, 49, 7773.	2.2	138
103	Caffeine Confinement into a Series of Functionalized Porous Zirconium MOFs: A Joint Experimental/Modeling Exploration. Journal of Physical Chemistry C, 2013, 117, 11694-11704.	1.5	70
104	N/S-Heterocyclic Contaminant Removal from Fuels by the Mesoporous Metal–Organic Framework MIL-100: The Role of the Metal Ion. Journal of the American Chemical Society, 2013, 135, 9849-9856.	6.6	138
105	â€~Green' fluorine-free mesoporous iron(III) trimesate nanoparticles for drug delivery. Green Materials, 2013, 1, 209-217.	1.1	37
106	Impact of the Flexible Character of MIL-88 Iron(III) Dicarboxylates on the Adsorption of <i>n</i> -Alkanes. Chemistry of Materials, 2013, 25, 479-488.	3.2	65
107	Green Microwave Synthesis of MILâ€100(Al, Cr, Fe) Nanoparticles for Thinâ€Film Elaboration. European Journal of Inorganic Chemistry, 2012, 2012, 5165-5174.	1.0	176
108	Toward Understanding the Influence of Ethylbenzene in <i>p</i> -Xylene Selectivity of the Porous Titanium Amino Terephthalate MIL-125(Ti): Adsorption Equilibrium and Separation of Xylene Isomers. Langmuir, 2012, 28, 3494-3502.	1.6	54

7

4

#	Article	IF	CITATIONS
109	In vitro determination of the CYP 3A4 activity in rat hepatic microsomes by liquid-phase extraction and HPLC-photodiode array detection. Journal of Pharmacological and Toxicological Methods, 2012, 66, 29-34.	0.3	8
110	Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2012, 2, 2060-2065.	5.5	213
111	lron(<scp>iii</scp>) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide. Catalysis Science and Technology, 2012, 2, 324-330.	2.1	197
112	Quantification of tetramethyl-terephthalic acid in rat liver, spleen and urine matrices by liquid–liquid phase extraction and HPLC-photodiode array detection. Journal of Pharmaceutical and Biomedical Analysis, 2012, 67-68, 98-103.	1.4	4
113	Evidence of Photoinduced Charge Separation in the Metal–Organic Framework MILâ€125(Ti)â€NH ₂ . ChemPhysChem, 2012, 13, 3651-3654.	1.0	103
114	Reverse Shape Selectivity in the Liquid-Phase Adsorption of Xylene Isomers in Zirconium Terephthalate MOF UiO-66. Langmuir, 2012, 28, 5715-5723.	1.6	112
115	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
116	Structure and Dynamics of the Functionalized MOF Type UiO-66(Zr): NMR and Dielectric Relaxation Spectroscopies Coupled with DFT Calculations. Chemistry of Materials, 2012, 24, 2168-2177.	3.2	200
117	How Interpenetration Ensures Rigidity and Permanent Porosity in a Highly Flexible Hybrid Solid. Chemistry of Materials, 2012, 24, 2486-2492.	3.2	50
118	Effect of the organic functionalization of flexible MOFs on the adsorption of CO2. Journal of Materials Chemistry, 2012, 22, 10266.	6.7	125
119	A quantitative structure activity relationship approach to probe the influence of the functionalization on the drug encapsulation of porous metal-organic frameworks. Microporous and Mesoporous Materials, 2012, 157, 124-130.	2.2	76
120	Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Microporous and Mesoporous Materials, 2012, 157, 137-145.	2.2	305
121	Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2. Microporous and Mesoporous Materials, 2012, 158, 229-234.	2.2	44
122	Energy‣fficient Dehumidification over Hierachically Porous Metal–Organic Frameworks as Advanced Water Adsorbents. Advanced Materials, 2012, 24, 806-810.	11.1	298
123	Porous Materials: Energy-Efficient Dehumidification over Hierachically Porous Metal-Organic Frameworks as Advanced Water Adsorbents (Adv. Mater. 6/2012). Advanced Materials, 2012, 24, 710-710.	11.1	7
124	Infrared study of the influence of reducible iron(iii) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metal–organic framework MIL-100. Physical Chemistry Chemical Physics, 2011, 13, 11748.	1.3	192
125	Small chemical causes drastic structural effects: the case of calcium glutarate. CrystEngComm, 2011, 13, 1894-1898.	1.3	35

126 Porous Metal–Organic Frameworks as New Drug Carriers. , 2011, , 559-573.

8

#	Article	IF	CITATIONS
127	Influence of the Organic Ligand Functionalization on the Breathing of the Porous Iron Terephthalate Metal Organic Framework Type Material upon Hydrocarbon Adsorption. Journal of Physical Chemistry C, 2011, 115, 18683-18695.	1.5	50
128	Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). Journal of Materials Chemistry, 2011, 21, 1226-1233.	6.7	251
129	Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs. Dalton Transactions, 2011, 40, 4879.	1.6	257
130	Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. Journal of Materials Chemistry, 2011, 21, 2220-2227.	6.7	263
131	Quantification of fumaric acid in liver, spleen and urine by high-performance liquid chromatography coupled to photodiode-array detection. Journal of Pharmaceutical and Biomedical Analysis, 2011, 56, 758-762.	1.4	39
132	How Linker's Modification Controls Swelling Properties of Highly Flexible Iron(III) Dicarboxylates MIL-88. Journal of the American Chemical Society, 2011, 133, 17839-17847.	6.6	383
133	Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine, 2011, 6, 1683-1695.	1.7	95
134	Selective Removal of Nâ€Heterocyclic Aromatic Contaminants from Fuels by Lewis Acidic Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 4210-4214.	7.2	159
135	Hydrocarbon adsorption in the isostructural metal organic frameworks MIL-53(Cr) and MIL-47(V). Microporous and Mesoporous Materials, 2011, 140, 114-119.	2.2	34
136	Quantification of trimesic acid in liver, spleen and urine by high-performance liquid chromatography coupled to a photodiode-array detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 2311-2314.	1.2	8
137	Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Hostâ^'Guest Interactions. Journal of the American Chemical Society, 2010, 132, 1127-1136.	6.6	445
138	Synthesis, Structure, Characterization, and Redox Properties of the Porous MILâ€68(Fe) Solid. European Journal of Inorganic Chemistry, 2010, 2010, 3789-3794.	1.0	191
139	BioMOFs: Metal–Organic Frameworks for Biological and Medical Applications. Angewandte Chemie - International Edition, 2010, 49, 6260-6266.	7.2	1,074
140	Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie - International Edition, 2010, 49, 5949-5952.	7.2	526
141	Inside Cover: Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption (Angew. Chem. Int. Ed. 34/2010). Angewandte Chemie - International Edition, 2010, 49, 5804-5804.	7.2	10
142	Porous metal–organic-framework nanoscale carriers as a potential platform for drug deliveryÂand imaging. Nature Materials, 2010, 9, 172-178.	13.3	3,629
143	Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chemical Communications, 2010, 46, 4526.	2.2	267
144	Adsorption properties in high optical quality nanoZIF-8 thin films with tunable thickness. Journal of Materials Chemistry, 2010, 20, 7676.	6.7	151

#	Article	IF	CITATIONS
145	Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr). Journal of the American Chemical Society, 2010, 132, 9488-9498.	6.6	185
146	Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal–Organic Frameworks. Advanced Materials, 2009, 21, 1931-1935.	11.1	257
147	Complex Adsorption of Short Linear Alkanes in the Flexible Metal-Organic-Framework MIL-53(Fe). Journal of the American Chemical Society, 2009, 131, 13002-13008.	6.6	281
148	Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr). Chemical Communications, 2009, , 7149.	2.2	146
149	Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery. Journal of the American Chemical Society, 2008, 130, 6774-6780.	6.6	1,564
150	Prediction of the Conditions for Breathing of Metal Organic Framework Materials Using a Combination of X-ray Powder Diffraction, Microcalorimetry, and Molecular Simulation. Journal of the American Chemical Society, 2008, 130, 12808-12814.	6.6	246
151	High-Throughput Assisted Rationalization of the Formation of Metal Organic Frameworks in the Iron(III) Aminoterephthalate Solvothermal System. Inorganic Chemistry, 2008, 47, 7568-7576.	1.9	480
152	Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chemical Communications, 2007, , 2820-2822.	2.2	1,218
153	Confinement and Controlled Release of Bisphosphonates on Ordered Mesoporous Silica-Based Materials. Journal of the American Chemical Society, 2006, 128, 8116-8117.	6.6	410
154	Influence of superficial organic modification of MCM-41 matrices on drug delivery rate. Solid State Sciences, 2006, 8, 1243-1249.	1.5	130
155	Controlled release of Ibuprofen from dealuminated faujasites. Solid State Sciences, 2006, 8, 1459-1465.	1.5	91
156	Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie - International Edition, 2006, 45, 5974-5978.	7.2	1,619
157	Bioactivity in ordered mesoporous materials. Solid State Sciences, 2004, 6, 1295-1300.	1.5	91
158	Influence of pore size of MCM-41 matrices on drug delivery rate. Microporous and Mesoporous Materials, 2004, 68, 105-109.	2.2	518
159	Drug Release and In Vitro Assays of Bioactive Polymer/Glass Mixtures. Journal of Sol-Gel Science and Technology, 2003, 26, 1195-1198.	1.1	19