Mark D Rausher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5526358/publications.pdf Version: 2024-02-01

MADE D RAUSHED

#	Article	IF	CITATIONS
1	Modularity and selection of nectar traits in the evolution of the selfing syndrome in <i>Ipomoea lacunosa</i> (Convolvulaceae). New Phytologist, 2022, 233, 1505-1519.	7.3	8
2	Morphological and molecular characterization of variation in common bean (Phaseolus vulgaris L.) germplasm from Azad Jammu and Kashmir, Pakistan. PLoS ONE, 2022, 17, e0265817.	2.5	1
3	Molecular analysis of structural genes involved in flavonoids biosynthesis in naturally colored cotton. Crop Science, 2021, 61, 1117-1126.	1.8	4
4	<i>R2R3â€MYB</i> genes control petal pigmentation patterning in <i>Clarkia gracilis</i> ssp. <i>sonomensis</i> (Onagraceae). New Phytologist, 2021, 229, 1147-1162.	7.3	29
5	Differences of flavonoid structural genes preferentially expressed in brown and green natural colored cotton. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2021, 45, 266-272.	2.1	3
6	Ancient Gene Duplications, Rather Than Polyploidization, Facilitate Diversification of Petal Pigmentation Patterns in <i>Clarkia gracilis</i> (Onagraceae). Molecular Biology and Evolution, 2021, 38, 5528-5538.	8.9	4
7	Genetic architecture of divergence: the selfing syndrome in <i>Ipomoea lacunosa</i> . American Journal of Botany, 2021, 108, 2038-2054.	1.7	5
8	The genome of a cave plant, <i>Primulina huaijiensis</i> , provides insights into adaptation to limestone karst habitats. New Phytologist, 2020, 227, 1249-1263.	7.3	32
9	Selection favors loss of floral pigmentation in a highly selfing morning glory. PLoS ONE, 2020, 15, e0231263.	2.5	3
10	Multiple aspects of the selfing syndrome of the morning glory <i>Ipomoea lacunosa</i> evolved in response to selection: A Qstâ€Fst comparison. Ecology and Evolution, 2019, 9, 7712-7725.	1.9	16
11	A taxonomic monograph of Ipomoea integrated across phylogenetic scales. Nature Plants, 2019, 5, 1136-1144.	9.3	67
12	Gene flow, divergent selection and resistance to introgression in two species of morning glories (<i>lpomoea</i>). Molecular Ecology, 2019, 28, 1709-1729.	3.9	31
13	Genetic architecture of quantitative flower and leaf traits in a pair of sympatric sister species of Primulina. Heredity, 2019, 122, 864-876.	2.6	17
14	Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia. Current Biology, 2018, 28, 1246-1256.e12.	3.9	133
15	Two genetic changes in cis-regulatory elements caused evolution of petal spot position in Clarkia. Nature Plants, 2018, 4, 14-22.	9.3	29
16	SNP â€skimming: A fast approach to map loci generating quantitative variation in natural populations. Molecular Ecology Resources, 2018, 18, 1402-1414.	4.8	10
17	Plant evolutionary developmental biology. Introduction to a special issue. New Phytologist, 2017, 216, 335-336.	7.3	1
18	How petals change their spots: <i>cis</i> â€regulatory reâ€wiring in <i>Clarkia</i> (Onagraceae). New Phytologist, 2017, 216, 510-518.	7.3	50

Mark D Rausher

#	Article	IF	CITATIONS
19	Evolution of host range in <i>Coleosporium ipomoeae</i> , a plant pathogen with multiple hosts. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5346-5351.	7.1	24
20	Costs of resistance and correlational selection in the multipleâ€herbivore community of <i>Solanum carolinense</i> . Evolution; International Journal of Organic Evolution, 2016, 70, 2411-2420.	2.3	9
21	Multiplexed shotgun genotyping resolves species relationships within the North American genus <i>Penstemon</i> . American Journal of Botany, 2016, 103, 912-922.	1.7	42
22	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
23	Prolonged Adaptive Evolution of a Defensive Gene in the Solanaceae. Molecular Biology and Evolution, 2016, 33, 143-151.	8.9	5
24	Commentary: When does understanding phenotypic evolution require identification of the underlying genes?. Evolution; International Journal of Organic Evolution, 2015, 69, 1655-1664.	2.3	62
25	Ecological Transition Predictably Associated with Gene Degeneration. Molecular Biology and Evolution, 2015, 32, 347-354.	8.9	53
26	Identification of major quantitative trait loci underlying floral pollination syndrome divergence in Penstemon. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130349.	4.0	67
27	PREDICTABILITY AND IRREVERSIBILITY OF GENETIC CHANGES ASSOCIATED WITH FLOWER COLOR EVOLUTION IN <i>PENSTEMON BARBATUS</i> . Evolution; International Journal of Organic Evolution, 2014, 68, 1058-1070.	2.3	69
28	Strong Reinforcing Selection in a Texas Wildflower. Current Biology, 2014, 24, 1995-1999.	3.9	29
29	THE EVOLUTION OF GENES IN BRANCHED METABOLIC PATHWAYS. Evolution; International Journal of Organic Evolution, 2013, 67, 34-48.	2.3	42
30	Precise spatioâ€ŧemporal regulation of the anthocyanin biosynthetic pathway leads to petal spot formation in <i>Clarkia gracilis</i> (Onagraceae). New Phytologist, 2013, 197, 958-969.	7.3	72
31	Evolution of the selfing syndrome in Ipomoea. Frontiers in Plant Science, 2013, 4, 301.	3.6	62
32	Morphological and genetic differentiation and reproductive isolation among closely related taxa in thelpomoeaseriesBatatas. American Journal of Botany, 2013, 100, 2183-2193.	1.7	16
33	Lessons from flower colour evolution on targets of selection. Journal of Experimental Botany, 2012, 63, 5741-5749.	4.8	130
34	Predictable patterns of constraint among anthocyaninâ€regulating transcription factors in <i>lpomoea</i> . New Phytologist, 2011, 191, 264-274.	7.3	20
35	POPULATION GENETICS, PLEIOTROPY, AND THE PREFERENTIAL FIXATION OF MUTATIONS DURING ADAPTIVE EVOLUTION. Evolution; International Journal of Organic Evolution, 2011, 65, 629-642.	2.3	134
36	Identification of two genes causing reinforcement in the Texas wildflower Phlox drummondii. Nature, 2011, 469, 411-414.	27.8	161

Mark D Rausher

#	Article	IF	CITATIONS
37	Gene Loss and Parallel Evolution Contribute to Species Difference in Flower Color. Molecular Biology and Evolution, 2011, 28, 2799-2810.	8.9	118
38	PARALLEL EVOLUTION AT MULTIPLE LEVELS IN THE ORIGIN OF HUMMINGBIRD POLLINATED FLOWERS IN <i>IN<i>IPOMOEA</i>. Evolution; International Journal of Organic Evolution, 2010, 64, 2044-54.</i>	2.3	78
39	Genetic changes contributing to the parallel evolution of red floral pigmentation among <i>Ipomoea</i> species. New Phytologist, 2009, 183, 751-763.	7.3	81
40	Altered trans-Regulatory Control of Gene Expression in Multiple Anthocyanin Genes Contributes to Adaptive Flower Color Evolution in Mimulus aurantiacus. Molecular Biology and Evolution, 2009, 26, 433-444.	8.9	75
41	Variation in Constraint Versus Positive Selection as an Explanation for Evolutionary Rate Variation Among Anthocyanin Genes. Journal of Molecular Evolution, 2008, 67, 137-144.	1.8	69
42	Comment on "Evolutionary Paths Underlying Flower Color Variation in Antirrhinum". Science, 2007, 315, 461a-461a.	12.6	1
43	Close clustering of anthers and stigma in Ipomoea hederacea enhances prezygotic isolation from Ipomoea purpurea. New Phytologist, 2007, 173, 641-647.	7.3	31
44	Plant evolutionary ecology. New Phytologist, 2005, 165, 2-5. Neutral Evolution of the Nonbinding Region of the Anthocyanin Regulatory Gene Ipmyb1 in	7.3	19
45	IpomoeaSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY986823, AY986824, AY986825, AY986826, AY986827, AY986828, AY986829, AY986830 AY986831, AY986832, AY986833, AY986834, AY986835, AY986836, AY986837, AY986838, AY986839, AY9868 AY986841, AY986842, AY986843, AY986844, AY986845, AY986846, AY986847, AY986848, AY986849, AY9868	0,29 340, 350.	41
46	AY986851, AY986852, AY98685, Genetics, 2005, 170, 1967-1978. Effects of variation at the flower-colour A locus on mating system parameters in Ipomoea purpurea. Molecular Ecology, 2004, 13, 1839-1847.	3.9	13
47	QUANTIFYING PATTERNS IN THE EVOLUTION OF REPRODUCTIVE ISOLATION. Evolution; International Journal of Organic Evolution, 2004, 58, 1424-1433.	2.3	34
48	Evolutionary Rate Variation in Anthocyanin Pathway Genes. Molecular Biology and Evolution, 2003, 20, 1844-1853.	8.9	108
49	Bioassay versus chemical assay: measuring the impact of induced and constitutive resistance on herbivores in the field. Oecologia, 2002, 131, 211-219.	2.0	38
50	Co-evolution and plant resistance to natural enemies. Nature, 2001, 411, 857-864.	27.8	391
51	BALANCING SELECTION ON A FLORAL POLYMORPHISM. Evolution; International Journal of Organic Evolution, 2000, 54, 691-695.	2.3	65
52	THE EFFECTS OF HOST-PLANT GENOTYPE ON HERBIVORE POPULATION DYNAMICS. Ecology, 2000, 81, 1565-1576.	3.2	93
53	The Effects of Host-Plant Genotype on Herbivore Population Dynamics. Ecology, 2000, 81, 1565.	3.2	3
54	Phylogenetic Systematics of Ipomoea (Convolvulaceae) Based on ITS and Waxy Sequences. Systematic Botany, 1999, 24, 209.	0.5	112

4

#	Article	IF	CITATIONS
55	THE ROLE OF INBREEDING DEPRESSION IN MAINTAINING THE MIXED MATING SYSTEM OF THE COMMON MORNING GLORY, <i>IPOMOEA PURPUREA</i> . Evolution; International Journal of Organic Evolution, 1999, 53, 1366-1376.	2.3	57
56	Control of expression patterns of anthocyanin structural genes by two loci in the common morning glory Genes and Genetic Systems, 1998, 73, 105-110.	0.7	28
57	DO FLORAL PIGMENTATION GENES ALSO INFLUENCE RESISTANCE TO ENEMIES? THEWLOCUS INIPOMOEA PURPUREA. Ecology, 1997, 78, 1646-1654.	3.2	73
58	EXPERIMENTAL MANIPULATION OF PUTATIVE SELECTIVE AGENTS PROVIDES EVIDENCE FOR THE ROLE OF NATURAL ENEMIES IN THE EVOLUTION OF PLANT DEFENSE. Evolution; International Journal of Organic Evolution, 1997, 51, 1435-1444.	2.3	406
59	SELECTION ON A FLORAL COLOR POLYMORPHISM IN THE TALL MORNING GLORY (IPOMOEA PURPUREA): TRANSMISSION SUCCESS OF THE ALLELES THROUGH POLLEN. Evolution; International Journal of Organic Evolution, 1997, 51, 66-78.	2.3	54
60	SELECTION ON A FLORAL COLOR POLYMORPHISM IN THE COMMON MORNING GLORY (<i>IPOMOEA) Tj ETQqO Organic Evolution, 1997, 51, 608-614.</i>	0 0 rgBT / 2.3	Overlock 10 13
61	VARIATION IN THE DEFENSE STRATEGIES OF PLANTS: ARE RESISTANCE AND TOLERANCE MUTUALLY EXCLUSIVE?. Ecology, 1997, 78, 1301-1311.	3.2	331
62	VARIATION IN THE DEFENSE STRATEGIES OF PLANTS: ARE RESISTANCE AND TOLERANCE MUTUALLY EXCLUSIVE?. , 1997, 78, 1301.		1
63	Clumped distribution patterns in goldenrod aphids: genetic and ecological mechanisms. Ecological Entomology, 1995, 20, 75-83.	2.2	8
64	Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 1995, 377, 517-520.	27.8	363
65	PATTERNS OF SELECTION ON PHYTOPHAGE RESISTANCE IN <i>IPOMOEA PURPUREA</i> . Evolution; International Journal of Organic Evolution, 1993, 47, 970-976.	2.3	48
66	ABSENCE OF POLLEN DISCOUNTING IN A GENOTYPE OF <i>IPOMOEA PURPUREA</i> EXHIBITING INCREASED SELFING. Evolution; International Journal of Organic Evolution, 1993, 47, 1688-1695.	2.3	78
67	THE MEASUREMENT OF SELECTION ON QUANTITATIVE TRAITS: BIASES DUE TO ENVIRONMENTAL COVARIANCES BETWEEN TRAITS AND FITNESS. Evolution; International Journal of Organic Evolution, 1992, 46, 616-626.	2.3	573
68	THE EVOLUTION OF RESISTANCE TO HERBIVORY IN <i>IPOMOEA PURPUREA</i> . I. ATTEMPTS TO DETECT SELECTION. Evolution; International Journal of Organic Evolution, 1989, 43, 563-572.	2.3	77
69	THE EVOLUTION OF RESISTANCE TO HERBIVORY IN <i>IPOMOEA PURPUREA </i> . II. NATURAL SELECTION BY INSECTS AND COSTS OF RESISTANCE. Evolution; International Journal of Organic Evolution, 1989, 43, 573-585.	2.3	115
70	Clutch size adjustment by a swallowtail butterfly. Nature, 1988, 333, 361-363.	27.8	91
71	Relationship of phenotypic and genetic variation in Plantago lanceolata to disease caused by Fusarium moniliforme var. subglutinans. Oecologia, 1984, 65, 89-93.	2.0	29
72	THE EVOLUTION OF HABITAT PREFERENCE IN SUBDIVIDED POPULATIONS. Evolution; International Journal of Organic Evolution, 1984, 38, 596-608.	2.3	136

#	Article	IF	CITATIONS
73	TRADEOFFS IN PERFORMANCE ON DIFFERENT HOSTS: EVIDENCE FROM WITHIN―AND BETWEENâ€SITE VARIATI IN THE BEETLE DELOYALA GUTTATA. Evolution; International Journal of Organic Evolution, 1984, 38, 582-595.	ON 2.3	204
74	POPULATION DIFFERENTIATION IN <i>EUPHYDRYAS EDITHA</i> BUTTERFLIES: LARVAL ADAPTATION TO DIFFERENT HOSTS. Evolution; International Journal of Organic Evolution, 1982, 36, 581-590.	2.3	126
75	The Effect of Native Vegetation on the Susceptibility of Aristolochia Reticulata (Aristolochiaceae) to Herbivore Attack. Ecology, 1981, 62, 1187-1195.	3.2	71
76	Herbivory, Plant Density, and Plant Reproductive Success: The Effect of Battus Philenor on Aristolochia Reticulata. Ecology, 1980, 61, 905-917.	3.2	135