List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5525063/publications.pdf Version: 2024-02-01

Χιινι Υιιανι

#	Article	IF	CITATIONS
1	From Aggregation-Induced Emission of Au(I)–Thiolate Complexes to Ultrabright Au(0)@Au(I)–Thiolate Core–Shell Nanoclusters. Journal of the American Chemical Society, 2012, 134, 16662-16670.	13.7	1,340
2	Toward Total Synthesis of Thiolate-Protected Metal Nanoclusters. Accounts of Chemical Research, 2018, 51, 1338-1348.	15.6	422
3	Synthesis of Highly Fluorescent Metal (Ag, Au, Pt, and Cu) Nanoclusters by Electrostatically Induced Reversible Phase Transfer. ACS Nano, 2011, 5, 8800-8808.	14.6	362
4	Glutathione-Protected Silver Nanoclusters as Cysteine-Selective Fluorometric and Colorimetric Probe. Analytical Chemistry, 2013, 85, 1913-1919.	6.5	312
5	Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon, 2009, 47, 1715-1722.	10.3	303
6	Luminescent Noble Metal Nanoclusters as an Emerging Optical Probe for Sensor Development. Chemistry - an Asian Journal, 2013, 8, 858-871.	3.3	299
7	Atomicâ€Precision Gold Clusters for NIRâ€Ħ Imaging. Advanced Materials, 2019, 31, e1901015.	21.0	279
8	Balancing the Rate of Cluster Growth and Etching for Gramâ€Scale Synthesis of Thiolateâ€Protected Au ₂₅ Nanoclusters with Atomic Precision. Angewandte Chemie - International Edition, 2014, 53, 4623-4627.	13.8	276
9	Highly luminescent silver nanoclusters with tunable emissions: cyclic reduction–decomposition synthesis and antimicrobial properties. NPG Asia Materials, 2013, 5, e39-e39.	7.9	237
10	Understanding seed-mediated growth of gold nanoclusters at molecular level. Nature Communications, 2017, 8, 927.	12.8	228
11	Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Scientific Reports, 2015, 5, 8669.	3.3	212
12	Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale, 2014, 6, 157-161.	5.6	186
13	Engineering gold-based radiosensitizers for cancer radiotherapy. Materials Horizons, 2017, 4, 817-831.	12.2	173
14	Engineering Functional Metal Materials at the Atomic Level. Advanced Materials, 2018, 30, e1802751.	21.0	170
15	The influence of lysosomal stability of silver nanomaterials on their toxicity to human cells. Biomaterials, 2014, 35, 6707-6715.	11.4	158
16	Aqueous dye adsorption on ordered mesoporous carbons. Journal of Colloid and Interface Science, 2007, 310, 83-89.	9.4	154
17	The support effect on the size and catalytic activity of thiolated Au ₂₅ nanoclusters as precatalysts. Nanoscale, 2015, 7, 6325-6333.	5.6	142
18	Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Research, 2014, 7, 301-307.	10.4	139

#	Article	IF	CITATIONS
19	Introducing Amphiphilicity to Noble Metal Nanoclusters via Phase-Transfer Driven Ion-Pairing Reaction. Journal of the American Chemical Society, 2015, 137, 2128-2136.	13.7	139
20	Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances, 2014, 4, 60581-60596.	3.6	128
21	Boiling water synthesis of ultrastable thiolated silver nanoclusters with aggregation-induced emission. Chemical Communications, 2015, 51, 15165-15168.	4.1	128
22	Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nature Communications, 2021, 12, 114.	12.8	123
23	Highly luminescent Ag+ nanoclusters for Hg2+ ion detection. Nanoscale, 2012, 4, 1968.	5.6	118
24	Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization. Chemical Engineering Journal, 2021, 403, 126326.	12.7	112
25	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science, 2021, 12, 99-127.	7.4	108
26	Novel Theranostic DNA Nanoscaffolds for the Simultaneous Detection and Killing of <i>Escherichia coli</i> and <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2014, 6, 21822-21831.	8.0	107
27	Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters. Particle and Particle Systems Characterization, 2015, 32, 613-629.	2.3	102
28	Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale, 2013, 5, 4606.	5.6	100
29	Antimicrobial strategies for urinary catheters. Journal of Biomedical Materials Research - Part A, 2019, 107, 445-467.	4.0	90
30	Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nature Communications, 2022, 13, 1596.	12.8	86
31	Counterionâ€Assisted Shaping of Nanocluster Supracrystals. Angewandte Chemie - International Edition, 2015, 54, 184-189.	13.8	81
32	Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews, 2022, 451, 214268.	18.8	79
33	Insights into the effect of surface ligands on the optical properties of thiolated Au ₂₅ nanoclusters. Chemical Communications, 2016, 52, 5234-5237.	4.1	75
34	Twoâ€Phase Synthesis of Small Thiolateâ€Protected Au ₁₅ and Au ₁₈ Nanoclusters. Small, 2013, 9, 2696-2701.	10.0	74
35	Real Time Monitoring of the Dynamic Intracluster Diffusion of Single Gold Atoms into Silver Nanoclusters. Journal of the American Chemical Society, 2019, 141, 18977-18983.	13.7	73
36	Fast Synthesis of Thiolated Au ₂₅ Nanoclusters via Protection–Deprotection Method. Journal of Physical Chemistry Letters, 2012, 3, 2310-2314.	4.6	71

#	Article	IF	CITATIONS
37	Enhancing stability through ligand-shell engineering: A case study with Au25(SR)18 nanoclusters. Nano Research, 2015, 8, 3488-3495.	10.4	66
38	Shining photocatalysis by gold-based nanomaterials. Nano Energy, 2021, 88, 106306.	16.0	64
39	Capacitive performance of mesoporous carbons derived from the citrates in ionic liquid. Carbon, 2010, 48, 2765-2772.	10.3	59
40	Facile synthesis of water-soluble Au25–xAgx nanoclusters protected by mono- and bi-thiolate ligands. Chemical Communications, 2014, 50, 7459.	4.1	59
41	Rocking-chair capacitive deionization with flow-through electrodes. Journal of Materials Chemistry A, 2020, 8, 8476-8484.	10.3	58
42	Silver Dopingâ€Induced Luminescence Enhancement and Redâ€Shift of Gold Nanoclusters with Aggregationâ€Induced Emission. Chemistry - an Asian Journal, 2019, 14, 765-769.	3.3	55
43	Assembly of Nanoions via Electrostatic Interactions: Ion-Like Behavior of Charged Noble Metal Nanoclusters. Scientific Reports, 2014, 4, 3848.	3.3	47
44	Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Research, 2020, 13, 203-208.	10.4	46
45	In Situ Synthesis of Bismuth Nanoclusters within Carbon Nanoâ€Bundles from Metal–Organic Framework for Chlorideâ€Đriven Electrochemical Deionization. Advanced Functional Materials, 2022, 32, .	14.9	46
46	Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization. Desalination, 2020, 494, 114665.	8.2	44
47	MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. Journal of Materials Chemistry A, 2020, 8, 1443-1450.	10.3	43
48	Preparation and application of mesoporous Fe/carbon composites as a drug carrier. Microporous and Mesoporous Materials, 2009, 117, 678-684.	4.4	40
49	Effect of ligand structure on the size control of mono- and bi-thiolate-protected silver nanoclusters. Chemical Communications, 2017, 53, 9697-9700.	4.1	40
50	Decorating Pt@cyclodextrin nanoclusters on C ₃ N ₄ /MXene for boosting the photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2021, 9, 6872-6880.	10.3	39
51	MoS2 nanoflakes-coated electrospun carbon nanofibers for "rocking-chair―capacitive deionization. Desalination, 2021, 520, 115376.	8.2	36
52	The <i>in situ</i> synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. Journal of Materials Chemistry B, 2020, 8, 4846-4850.	5.8	35
53	Heating or Cooling: Temperature Effects on the Synthesis of Atomically Precise Gold Nanoclusters. Journal of Physical Chemistry C, 2017, 121, 10743-10751.	3.1	32
54	Traveling through the Desalting Column Spontaneously Transforms Thiolated Ag Nanoclusters from Nonluminescent to Highly Luminescent. Journal of Physical Chemistry Letters, 2013, 4, 1811-1815.	4.6	31

#	Article	IF	CITATIONS
55	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. Dalton Transactions, 2019, 48, 10385-10392.	3.3	30
56	Adsorption of bulky molecules of nonylphenol ethoxylate on ordered mesoporous carbons. Journal of Colloid and Interface Science, 2008, 322, 558-565.	9.4	29
57	Miscibleâ€Solventâ€Assisted Twoâ€Phase Synthesis of Monolayerâ€Ligandâ€Protected Metal Nanoclusters with Various Sizes. Advanced Materials, 2020, 32, e1906063.	21.0	29
58	MnO2 decorated porous carbon derived from Enteromorpha prolifera as flow-through electrode for dual-mode capacitive deionization. Desalination, 2021, 504, 114977.	8.2	29
59	Mesoporous carbons derived from citrates for use in electrochemical capacitors. New Carbon Materials, 2010, 25, 370-375.	6.1	26
60	Highly Luminescent AuAg Nanoclusters with Aggregation-Induced Emission for High-Performance White LED Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 15336-15343.	6.7	26
61	The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews, 2021, 438, 213900.	18.8	24
62	Injectable Ag nanoclusters-based hydrogel for wound healing via eliminating bacterial infection and promoting tissue regeneration. Chemical Engineering Journal, 2021, 420, 127589.	12.7	23
63	Solvent Controls the Formation of Au ₂₉ (SR) ₂₀ Nanoclusters in the COâ€Reduction Method. Particle and Particle Systems Characterization, 2014, 31, 652-656.	2.3	22
64	Layered double hydroxide coated electrospun carbon nanofibers as the chloride capturing electrode for ultrafast electrochemical deionization. Journal of Colloid and Interface Science, 2022, 609, 289-296.	9.4	20
65	From understanding the roles of tetraoctylammonium bromide in the two-phase Brust–Schiffrin method to tuning the size of gold nanoclusters. Nanoscale, 2020, 12, 19855-19860.	5.6	18
66	Marrying luminescent Au nanoclusters to TiO ₂ for visible-light-driven antibacterial application. Nanoscale, 2021, 13, 18996-19003.	5.6	18
67	Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity. Nanoscale, 2022, 14, 8183-8191.	5.6	17
68	Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. Journal of Colloid and Interface Science, 2022, 608, 2752-2759.	9.4	16
69	Morphological control in synthesis of cobalt basic carbonate nanorods assembly. Materials Letters, 2008, 62, 1396-1399.	2.6	15
70	Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale, 2020, 12, 6449-6455.	5.6	14
71	Ligand engineering of Au nanoclusters with multifunctional metalloporphyrins for photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2022, 10, 8371-8377. 	10.3	13
72	Quaternary ammonium cellulose promoted synthesis of hollow nano-sized ZSM-5 zeolite as stable catalyst for benzene alkylation with ethanol. Journal of Materials Science, 2021, 56, 8461-8478.	3.7	11

#	Article	IF	CITATIONS
73	Preparation of polyaniline oated mesoporous carbon and its enhanced electrochemical properties. Polymers for Advanced Technologies, 2009, 20, 1179-1182.	3.2	10
74	Metal Nanoclusters: Engineering Functional Metal Materials at the Atomic Level (Adv. Mater. 47/2018). Advanced Materials, 2018, 30, 1870358.	21.0	10
75	Dynamic Metal Exchange between a Metalloid Silver Cluster and Silver(I) Thiolate. Inorganic Chemistry, 2021, 60, 3037-3045.	4.0	10
76	Mechanistic insights into the two-phase synthesis of heteroleptic Au nanoclusters. Nanoscale, 2021, 13, 3512-3518.	5.6	8
77	In-situ grown Ag on magnetic halloysite nanotubes in scaffolds: Antibacterial, biocompatibility and mechanical properties. Ceramics International, 2021, 47, 32756-32765.	4.8	6
78	Recent Advances of Biomass Derived Electrode Materials for Capacitive Deionization. Current Nanoscience, 2022, 18, 2-17.	1.2	3
79	Engineering Durable Superhydrophobic Photocatalyst for Oilâ€Water Separation and Degradation of Chemical Pollutants. ChemistrySelect. 2021. 6. 7271-7277.	1.5	3