Liuchun Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5524680/publications.pdf Version: 2024-02-01

LUICHUN ZHENC

#	Article	IF	CITATIONS
1	Reversible Zn2+-induced 3D self-assembly aerogel of carboxyl modified copper indium diselenide quantum dots:mechanism and application for inkjet printing anti-counterfeiting. Soft Matter, 2022, , .	2.7	0
2	A Non-Isocyanate Route to Poly(Ether Urethane): Synthesis and Effect of Chemical Structures of Hard Segment. Polymers, 2022, 14, 2039.	4.5	3
3	The yellowing mechanism of polyesteramide based on poly(ethylene terephthalate) and polyamide 6. Journal of Applied Polymer Science, 2021, 138, 49986.	2.6	4
4	Mannose modified zwitterionic polyester-conjugated second near-infrared organic fluorophore for targeted photothermal therapy. Biomaterials Science, 2021, 9, 4648-4661.	5.4	14
5	Crystallization of poly(hexamethylene carbonate)-co-poly(hexamethylene urethane) segmental block copolymers: From single to double crystalline phases. Polymer, 2021, 222, 123675.	3.8	10
6	Delivery of Cationic Platinum Prodrugs via Reduction Sensitive Polymer for Improved Chemotherapy. Small, 2021, 17, e2101804.	10.0	16
7	Nondestructive Strategy to Effectively Enhance the Interfacial Adhesion of PBO/Epoxy Composites. ACS Applied Materials & Interfaces, 2020, 12, 45383-45393.	8.0	26
8	MoSe2 nanosheets as a functional host for lithium-sulfur batteries. Journal of Energy Chemistry, 2020, 47, 241-247.	12.9	54
9	ABA triblock copolyesters composed of poly(l-lactide) A hard blocks: comparison of amorphous and crystalline unsaturated aliphatic polyesters as B soft blocks. Journal of Materials Science, 2020, 55, 9129-9143.	3.7	8
10	pH/redox sensitive nanoparticles with platinum(iv) prodrugs and doxorubicin enhance chemotherapy in ovarian cancer. RSC Advances, 2019, 9, 20513-20517.	3.6	14
11	Design of zwitterionic polyester based nano-carriers for platinum(iv) prodrug delivery. Polymer Chemistry, 2019, 10, 5353-5363.	3.9	9
12	A comparison of non-isocyanate and HDI-based poly(ether urethane): Structure and properties. Polymer, 2019, 175, 186-194.	3.8	31
13	Nanovoid Membranes Embedded with Hollow Zwitterionic Nanocapsules for a Superior Desalination Performance. Nano Letters, 2019, 19, 2953-2959.	9.1	59
14	Development of biodegradable polyesters based on a hydroxylated coumarin initiator towards fluorescent visible paclitaxel-loaded microspheres. Journal of Materials Chemistry B, 2019, 7, 2261-2276.	5.8	8
15	A facile method to synthesize bio-based and biodegradable copolymers from furandicarboxylic acid and isosorbide with high molecular weights and excellent thermal and mechanical properties. Polymer Chemistry, 2019, 10, 5594-5601.	3.9	29
16	Cationic polyesters with antibacterial properties: Facile and controllable synthesis and antibacterial study. European Polymer Journal, 2019, 110, 41-48.	5.4	21
17	Reversible Lamellar Periodic Structures Induced by Sequential Crystallization/Melting in PBS- <i>co</i> -PCL Multiblock Copolymer. Macromolecules, 2018, 51, 1100-1109.	4.8	27
18	Coherent TiO ₂ /BaTiO ₃ heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chemical Communications, 2018, 54, 12250-12253.	4.1	53

LIUCHUN ZHENG

#	Article	IF	CITATIONS
19	A solvent-free route to non-isocyanate poly(carbonate urethane) with high molecular weight and competitive mechanical properties. European Polymer Journal, 2018, 107, 258-266.	5.4	26
20	Competition and miscibility of isodimorphism and their effects on band spherulites and mechanical properties of poly(butylene succinate-co-cis-butene succinate) unsaturated aliphatic copolyesters. Polymer, 2018, 150, 52-63.	3.8	30
21	Relationship between melting behavior and morphological changes of semicrystalline polymers. Journal of Thermal Analysis and Calorimetry, 2017, 129, 777-787.	3.6	7
22	Miscibility and competition of cocrystallization behavior of poly(hexamethylene dicarboxylate)s aliphatic copolyesters: Effect of chain length of aliphatic diacids. European Polymer Journal, 2017, 92, 71-85.	5.4	41
23	Grafted copolymer micelles with pH triggered charge reversibility for efficient doxorubicin delivery. Journal of Polymer Science Part A, 2017, 55, 2036-2046.	2.3	16
24	Insight into the role of bound water of a nucleating agent in polymer nucleation: a comparative study of anhydrous and monohydrated orotic acid on crystallization of poly(<scp>l</scp> -lactic acid). RSC Advances, 2017, 7, 27150-27161.	3.6	14
25	Progress in biodegradable zwitterionic materials. Polymer Degradation and Stability, 2017, 139, 1-19.	5.8	24
26	Preparation and antimicrobial activity of sulfopropyl chitosan in an ionic liquid aqueous solution. Journal of Applied Polymer Science, 2017, 134, .	2.6	18
27	Applications of zwitterionic polymers. Reactive and Functional Polymers, 2017, 118, 51-61.	4.1	188
28	Double Crystalline Multiblock Copolymers with Controlling Microstructure for High Shape Memory Fixity and Recovery. ACS Applied Materials & amp; Interfaces, 2017, 9, 30046-30055.	8.0	35
29	Inhibition of Heterogeneous Ice Nucleation by Bioinspired Coatings of Polyampholytes. ACS Applied Materials & Interfaces, 2017, 9, 30092-30099.	8.0	34
30	Efficient synthesis of ionic triblock copolyesters and facile access to chargeâ€reversal hybrid micelles. Journal of Polymer Science Part A, 2016, 54, 1259-1267.	2.3	9
31	Aliphatic–aromatic poly(butylene carbonateâ€ <i>co</i> â€ŧerephthalate) random copolymers: Synthesis, cocrystallization, and compositionâ€dependent properties. Journal of Applied Polymer Science, 2015, 132,	2.6	19
32	Synthesis and characterization of water-soluble chitosan grafted with hydrophilic aliphatic polyester. International Journal of Biological Macromolecules, 2015, 74, 433-438.	7.5	17
33	Functional polyester with widely tunable mechanical properties: The role of reversible cross-linking and crystallization. Polymer, 2015, 65, 202-209.	3.8	21
34	A high-molecular-weight and high-T _g poly(ester carbonate) partially based on isosorbide: synthesis and structure–property relationships. Polymer Chemistry, 2015, 6, 633-642.	3.9	59
35	A designed synthetic strategy toward poly(isosorbide terephthalate) copolymers: a combination of temporary modification, transesterification, cyclization and polycondensation. Polymer Chemistry, 2015, 6, 7470-7479.	3.9	26
36	Preparation of graphene/poly(p-phenylenebenzobisoxazole) composite fibers based on simultaneous zwitterion coating and chemical reduction of graphene oxide at room temperature. RSC Advances, 2015, 5, 88646-88654.	3.6	2

LIUCHUN ZHENG

#	Article	IF	CITATIONS
37	A facile and versatile strategy to efficiently synthesize sulfonated poly(butylene succinate), self-assembly behavior and biocompatibility. Polymer Chemistry, 2015, 6, 1495-1501.	3.9	27
38	Effect of the biobased linear long-chain monomer on crystallization and biodegradation behaviors of poly(butylene carbonate)-based copolycarbonates. RSC Advances, 2015, 5, 2213-2222.	3.6	32
39	Modification of chitosan with monomethyl fumaric acid in an ionic liquid solution. Carbohydrate Polymers, 2015, 117, 973-979.	10.2	49
40	Stretching induced phase separation in poly(vinylidene fluoride)/poly(butylene succinate) blends studied by in-situ X-ray scattering. Polymer, 2014, 55, 2588-2596.	3.8	27
41	Critical Stress for Crystal Transition in Poly(butylene succinate)-Based Crystalline–Amorphous Multiblock Copolymers. Macromolecules, 2014, 47, 7533-7539.	4.8	44
42	Synthesis and properties of biodegradable multiblock poly(esterâ€carbonate) comprising of poly(<scp>L</scp> â€lactic acid) and poly(butylene carbonate) with hexamethylene diisocyanate as chainâ€extender. Journal of Applied Polymer Science, 2014, 131, .	2.6	2
43	Stress induced lamellar thickening in poly(ethylene succinate). Polymer, 2013, 54, 6860-6866.	3.8	13
44	A novel and simple procedure to synthesize chitosan-graft-polycaprolactone in an ionic liquid. Carbohydrate Polymers, 2013, 94, 505-510.	10.2	61
45	A nonâ€phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: Synthesis, characterization, and properties. Journal of Polymer Science Part A, 2013, 51, 1387-1397.	2.3	105
46	Novel Poly(butylene fumarate) and Poly(butylene succinate) Multiblock Copolymers Bearing Reactive Carbon–Carbon Double Bonds: Synthesis, Characterization, Cocrystallization, and Properties. Industrial & Engineering Chemistry Research, 2013, 52, 6147-6155.	3.7	34
47	Synthesis, characterization and properties of novel linear poly(butylene fumarate) bearing reactive double bonds. Polymer, 2013, 54, 631-638.	3.8	26
48	<i>In situ</i> Synthesis of Poly(methyl methacrylate)/Graphene Oxide Nanocomposites Using Thermal-initiated and Graphene Oxide-initiated Polymerization. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 720-727.	2.2	20
49	Novel Unsaturated Aliphatic Polyesters: Synthesis, Characterization, and Properties of Multiblock Copolymers Composing of Poly(Butylene Fumarate) and Poly(1,2-Propylene Succinate). Industrial & Engineering Chemistry Research, 2012, 51, 14107-14114.	3.7	13
50	Reversible Lamellar Thickening Induced by Crystal Transition in Poly(butylene succinate). Macromolecules, 2012, 45, 5487-5493.	4.8	83
51	Synthesis and Characterization of Poly(<i>p</i> -phenylene benzobisoxazole)/Poly(pyridobisimidazole) Block Copolymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 508-517.	2.2	2
52	Synthesis and Properties of Biodegradable Poly(ester- <i>co</i> -carbonate) Multiblock Copolymers Comprising of Poly(butylene Succinate) and Poly(butylene Carbonate) by Chain Extension. Industrial & Engineering Chemistry Research, 2012, 51, 10785-10792.	3.7	34
53	Novel Biodegradable and Double Crystalline Multiblock Copolymers Comprising of Poly(butylene) Tj ETQq1 1 0.7 Engineering Chemistry Research, 2012, 51, 7264-7272.	84314 rgE 3.7	BT /Overlock 24
54	Surface decoration of graphene by grafting polymerization using graphene oxide as the initiator. Journal of Materials Chemistry, 2012, 22, 3982.	6.7	67

LIUCHUN ZHENG

#	Article	IF	CITATIONS
55	Fully biodegradable blends of poly(butylene succinate) and poly(butylene carbonate): Miscibility, thermal properties, crystallization behavior and mechanical properties. Polymer Testing, 2012, 31, 39-45.	4.8	39
56	Synthesis of highâ€impact biodegradable multiblock copolymers comprising of poly(butylene succinate) and poly(1,2â€propylene succinate) with hexamethylene diisocyanate as chain extender. Polymers for Advanced Technologies, 2011, 22, 279-285.	3.2	41
57	Synthesis, characterization and properties of novel biodegradable multiblock copolymers comprising poly(butylene succinate) and poly(1,2â€propylene terephthalate) with hexamethylene diisocyanate as a chain extender. Polymer International, 2011, 60, 666-675.	3.1	36
58	Investigation on isothermal crystallization, melting behaviors, and spherulitic morphologies of multiblock copolymers containing poly(butylene succinate) and poly(1,2â€propylene succinate). Journal of Applied Polymer Science, 2011, 119, 2124-2134.	2.6	10
59	Multiblock copolymers composed of poly(butylene succinate) and poly(1,2-propylene succinate): Effect of molar ratio of diisocyanate to polyester-diols on crosslink densities, thermal properties, mechanical properties and biodegradability. Polymer Degradation and Stability, 2010, 95, 1743-1750.	5.8	37
60	Synthesis, characterization and properties of biodegradable poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 893-899.) 547 Td (s 3.1	succinate)― 34
61	A new amphoteric superabsorbent hydrogel based on sodium starch sulfate. Bioresource Technology, 2008, 99, 444-447.	9.6	69

Preparation and swelling behavior of amphoteric superabsorbent composite with semi-IPN composed of poly(acrylic acid)/Ca-bentonite/poly(dimethyldiallylammonium chloride). Polymers for Advanced Technologies, 2007, 18, 194-199. 62 3.2 23

5