
Robert D Tilton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5523477/publications.pdf Version: 2024-02-01

ROBERT D THTON

#	Article	IF	CITATIONS
1	Surfactant spreading on a deep subphase: Coupling of Marangoni flow and capillary waves. Journal of Colloid and Interface Science, 2022, 614, 511-521.	5.0	7
2	Tuning chemotactic and diffusiophoretic spreading <i>via</i> hydrodynamic flows. Soft Matter, 2022, 18, 1896-1910.	1.2	8
3	Star Polymers with Designed Reactive Oxygen Species Scavenging and Agent Delivery Functionality Promote Plant Stress Tolerance. ACS Nano, 2022, 16, 4467-4478.	7.3	26
4	Marangoni Spreading Time Evolution and Synergism in Binary Surfactant Mixtures. Journal of Colloid and Interface Science, 2022, , .	5.0	3
5	Interfacial dilatational rheology as a bridge to connect amphiphilic heterografted bottlebrush copolymer architecture to emulsifying efficiency. Journal of Colloid and Interface Science, 2021, 581, 135-147.	5.0	18
6	Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. Environmental Science & Technology, 2021, 55, 1231-1241.	4.6	16
7	Surfactant Driven Marangoni Spreading in the Presence of Predeposited Insoluble Surfactant Monolayers. Langmuir, 2021, 37, 3309-3320.	1.6	11
8	Macrotransport theory for diffusiophoretic colloids and chemotactic microorganisms. Journal of Fluid Mechanics, 2021, 917, .	1.4	14
9	Star Polymer Size, Charge Content, and Hydrophobicity Affect their Leaf Uptake and Translocation in Plants. Environmental Science & Technology, 2021, 55, 10758-10768.	4.6	36
10	Phosphate Polymer Nanogel for Selective and Efficient Rare Earth Element Recovery. Environmental Science & Technology, 2021, 55, 12549-12560.	4.6	22
11	pH-Dependent Interfacial Tension and Dilatational Modulus Synergism of Oil-Soluble Fatty Acid and Water-Soluble Cationic Surfactants at the Oil/Water Interface. Langmuir, 2021, 37, 11573-11581.	1.6	12
12	Effect of a Surfactant Additive on Drug Transport and Distribution Uniformity After Aerosol Delivery to Ex Vivo Lungs. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, , .	0.7	0
13	Dispersion in steady and timeâ€oscillatory flows through an eccentric annulus. AICHE Journal, 2020, 66, e16831.	1.8	11
14	Advective-diffusive spreading of diffusiophoretic colloids under transient solute gradients. Soft Matter, 2020, 16, 238-246.	1.2	16
15	Swelling of multi-responsive spherical polyelectrolyte brushes across a wide range of grafting densities. Colloid and Polymer Science, 2020, 298, 35-49.	1.0	10
16	Depletion Forces Induced by Mixed Micelles of Nonionic Block Copolymers and Anionic Surfactants. Langmuir, 2020, 36, 10772-10784.	1.6	9
17	Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for <i>in Vivo</i> Agrochemical Delivery. ACS Nano, 2020, 14, 10954-10965.	7.3	108
18	Control of the colloidal depletion force in nonionic polymer solutions by complexation with anionic surfactants. Journal of Colloid and Interface Science, 2019, 553, 436-450.	5.0	16

#	Article	IF	CITATIONS
19	Colloidal Depletion and Structural Force Synergism or Antagonism in Solutions of Mutually Repelling Polyelectrolytes and Ionic Surfactants. Langmuir, 2019, 35, 15937-15947.	1.6	10
20	Flow regime transitions and effects on solute transport in surfactant-driven Marangoni flows. Journal of Colloid and Interface Science, 2019, 553, 136-147.	5.0	14
21	Dispersion in steady and time-oscillatory two-dimensional flows through a parallel-plate channel. Physics of Fluids, 2019, 31, 022007.	1.6	23
22	Opportunities for complex fluids engineering <scp>w</scp> ith nanoparticulate polymer brushes. AICHE Journal, 2019, 65, 3-12.	1.8	2
23	Adsorbed poly(aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 2018, 25, 7157-7169.	2.7	28
24	Evolution and disappearance of solvent drops on miscible polymer subphases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 546, 266-275.	2.3	4
25	Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Current Opinion in Colloid and Interface Science, 2018, 36, 58-69.	3.4	33
26	Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions. Journal of Colloid and Interface Science, 2018, 526, 114-123.	5.0	15
27	<i>Moringa oleifera</i> Seed Protein Adsorption to Silica: Effects of Water Hardness, Fractionation, and Fatty Acid Extraction. Langmuir, 2018, 34, 4852-4860.	1.6	12
28	Aerosolizing Lipid Dispersions Enables Antibiotic Transport Across Mimics of the Lung Airway Surface Even in the Presence of Pre-existing Lipid Monolayers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 212-220.	0.7	11
29	Effect of humic acids on the kaolin coagulation performance of Moringa oleifera proteins. Journal of Environmental Chemical Engineering, 2018, 6, 4564-4572.	3.3	8
30	Responsive behavior of a branched-chain polymer network: a molecular dynamics study. Soft Matter, 2018, 14, 6485-6495.	1.2	6
31	Effect of emplaced nZVI mass and groundwater velocity on PCE dechlorination and hydrogen evolution in water-saturated sand. Journal of Hazardous Materials, 2017, 322, 136-144.	6.5	30
32	Heterografted Molecular Brushes as Stabilizers for Water-in-Oil Emulsions. Macromolecules, 2017, 50, 2942-2950.	2.2	71
33	Silver Sink Effect of Humic Acid on Bacterial Surface Colonization in the Presence of Silver Ions and Nanoparticles. Environmental Science & Technology, 2017, 51, 1754-1763.	4.6	14
34	Enhanced interfacial activity of multi-arm poly(ethylene oxide) star polymers relative to linear poly(ethylene oxide) at fluid interfaces. Physical Chemistry Chemical Physics, 2017, 19, 23854-23868.	1.3	15
35	Transport of a partially wetted particle at the liquid/vapor interface under the influence of an externally imposed surfactant generated Marangoni stress. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 49-60.	2.3	14
36	Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. Journal of Colloid and Interface Science, 2016, 484, 270-278.	5.0	19

#	Article	IF	CITATIONS
37	Sequential Adsorption of Nanoparticulate Polymer Brushes as a Strategy To Control Adhesion and Friction. Langmuir, 2016, 32, 11440-11447.	1.6	8
38	Comparative coagulation performance study of Moringa oleifera cationic protein fractions with varying water hardness. Journal of Environmental Chemical Engineering, 2016, 4, 4690-4698.	3.3	35
39	Critical review: impacts of macromolecular coatings on critical physicochemical processes controlling environmental fate of nanomaterials. Environmental Science: Nano, 2016, 3, 283-310.	2.2	130
40	Effect of polyelectrolyte–surfactant complexation on Marangoni transport at a liquid–liquid interface. Journal of Colloid and Interface Science, 2016, 467, 105-114.	5.0	15
41	Inhibition of bacterial surface colonization by immobilized silver nanoparticles depends critically on the planktonic bacterial concentration. Journal of Colloid and Interface Science, 2016, 467, 17-27.	5.0	28
42	Transient Marangoni transport of colloidal particles at the liquid/liquid interface caused by surfactant convective-diffusion under radial flow. Journal of Colloid and Interface Science, 2016, 462, 75-87.	5.0	10
43	Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 2: Low Deposition Flux Representative of Aerosol Delivery to Small Airways. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 394-405.	0.7	10
44	Surfactant Driven Post-Deposition Spreading of Aerosols on Complex Aqueous Subphases. 1: High Deposition Flux Representative of Aerosol Delivery to Large Airways. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 382-393.	0.7	16
45	Ionic Surfactant Binding to pH-Responsive Polyelectrolyte Brush-Grafted Nanoparticles in Suspension and on Charged Surfaces. Langmuir, 2015, 31, 13680-13689.	1.6	13
46	Correlation of the Physicochemical Properties of Natural Organic Matter Samples from Different Sources to Their Effects on Gold Nanoparticle Aggregation in Monovalent Electrolyte. Environmental Science & Technology, 2015, 49, 2188-2198.	4.6	103
47	Emulsification synergism in mixtures of polyelectrolyte brush-grafted nanoparticles and surfactants. Journal of Colloid and Interface Science, 2015, 449, 152-159.	5.0	11
48	Electrostatically Controlled Swelling and Adsorption of Polyelectrolyte Brush-Grafted Nanoparticles to the Solid/Liquid Interface. Langmuir, 2014, 30, 4056-4065.	1.6	20
49	Stable emulsions with thermally responsive microstructure and rheology using poly(ethylene oxide) star polymers as emulsifiers. Journal of Colloid and Interface Science, 2013, 394, 284-292.	5.0	31
50	Kinetic and Equilibrium Aspects of Adsorption and Desorption of Class II Hydrophobins HFBI and HFBII at Silicon Oxynitride/Water and Air/Water Interfaces. Langmuir, 2013, 29, 2683-2691.	1.6	11
51	Effects of Molecular Weight Distribution and Chemical Properties of Natural Organic Matter on Gold Nanoparticle Aggregation. Environmental Science & Technology, 2013, 47, 4245-4254.	4.6	165
52	Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases. ACS Applied Materials & amp; Interfaces, 2013, 5, 5542-5549.	4.0	23
53	Poly(Ethylene Oxide) Star Polymer Adsorption at the Silica/Aqueous Interface and Displacement by Linear Poly(Ethylene Oxide). Langmuir, 2013, 29, 3999-4007.	1.6	21
54	Imaging the Postdeposition Dispersion of an Inhaled Surfactant Aerosol. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 290-296.	0.7	14

#	Article	IF	CITATIONS
55	Natural Organic Matter Alters Biofilm Tolerance to Silver Nanoparticles and Dissolved Silver. Environmental Science & Technology, 2012, 46, 12687-12696.	4.6	133
56	Autophobing on Liquid Subphases Driven by the Interfacial Transport of Amphiphilic Molecules. Langmuir, 2012, 28, 15212-15221.	1.6	18
57	Nanomechanical mapping of a high curvature polymer brush grafted from a rigid nanoparticle. Soft Matter, 2012, 8, 8312.	1.2	32
58	Interfacial Dynamics and Rheology of Polymer-Grafted Nanoparticles at Air–Water and Xylene–Water Interfaces. Langmuir, 2012, 28, 8052-8063.	1.6	101
59	PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-in-Water Emulsions. Macromolecules, 2012, 45, 9419-9426.	2.2	81
60	Parameter Identifiability in Application of Soft Particle Electrokinetic Theory To Determine Polymer and Polyelectrolyte Coating Thicknesses on Colloids. Langmuir, 2012, 28, 10334-10347.	1.6	45
61	Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. Journal of Colloid and Interface Science, 2012, 370, 1-10.	5.0	181
62	Coverage-dependent morphology of PEGylated lysozyme layers adsorbed on silica. Journal of Colloid and Interface Science, 2012, 370, 170-175.	5.0	5
63	Microbial Bioavailability of Covalently Bound Polymer Coatings on Model Engineered Nanomaterials. Environmental Science & Technology, 2011, 45, 5253-5259.	4.6	84
64	Polymer-Modified Fe ⁰ Nanoparticles Target Entrapped NAPL in Two Dimensional Porous Media: Effect of Particle Concentration, NAPL Saturation, and Injection Strategy. Environmental Science & Technology, 2011, 45, 6102-6109.	4.6	86
65	Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery. Molecular Pharmaceutics, 2011, 8, 387-394.	2.3	44
66	Magnetophoresis of Nanoparticles. ACS Nano, 2011, 5, 217-226.	7.3	125
67	Hydrophobic Interactions Increase Attachment of Gum Arabic- and PVP-Coated Ag Nanoparticles to Hydrophobic Surfaces. Environmental Science & Technology, 2011, 45, 5988-5995.	4.6	134
68	The Conformation of the Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and Mono-PEGylated Human Growth Hormone. Bioconjugate Chemistry, 2011, 22, 2317-2323.	1.8	80
69	International man of science: A tribute to Professor Per Claesson. Advances in Colloid and Interface Science, 2010, 155, 3-4.	7.0	0
70	Estimating Attachment of Nano- and Submicrometer-particles Coated with Organic Macromolecules in Porous Media: Development of an Empirical Model. Environmental Science & Technology, 2010, 44, 4531-4538.	4.6	146
71	Impact of Nanoscale Zero Valent Iron on Geochemistry and Microbial Populations in Trichloroethylene Contaminated Aquifer Materials. Environmental Science & Technology, 2010, 44, 3474-3480.	4.6	187
72	Pickering Emulsions Stabilized by Nanoparticles with Thermally Responsive Grafted Polymer Brushes. Langmuir, 2010, 26, 15200-15209.	1.6	204

#	Article	IF	CITATIONS
73	Polymer Dynamics in Layer-by-Layer Assemblies of Chitosan and Heparin. Langmuir, 2010, 26, 3242-3251.	1.6	42
74	Protein PEGylation Attenuates Adsorption and Aggregation on a Negatively Charged and Moderately Hydrophobic Polymer Surface. Langmuir, 2010, 26, 18231-18238.	1.6	30
75	Comparative Study of Polymeric Stabilizers for Magnetite Nanoparticles Using ATRP. Langmuir, 2010, 26, 16890-16900.	1.6	68
76	Plasmonic magnetic nanoparticles for biomedicine. , 2009, 2009, 4477-8.		2
77	Liposome rupture and contents release over coplanar microelectrode arrays. Journal of Colloid and Interface Science, 2009, 332, 113-121.	5.0	11
78	Optical imaging and magnetophoresis of nanorods. Journal of Magnetism and Magnetic Materials, 2009, 321, 1557-1562.	1.0	33
79	Poly(ethylene glycol)-Modified Proteins: Implications for Poly(lactide-co-glycolide)-Based Microsphere Delivery. AAPS Journal, 2009, 11, 88-98.	2.2	45
80	Adsorbed Polyelectrolyte Coatings Decrease Fe ⁰ Nanoparticle Reactivity with TCE in Water: Conceptual Model and Mechanisms. Environmental Science & Technology, 2009, 43, 1507-1514.	4.6	211
81	Fe ⁰ Nanoparticles Remain Mobile in Porous Media after Aging Due to Slow Desorption of Polymeric Surface Modifiers. Environmental Science & Technology, 2009, 43, 3824-3830.	4.6	148
82	Stabilization of Superparamagnetic Iron Oxide Coreâ^'Gold Shell Nanoparticles in High Ionic Strength Media. Langmuir, 2009, 25, 13384-13393.	1.6	120
83	Effect of Adsorbed Polyelectrolytes on Nanoscale Zero Valent Iron Particle Attachment to Soil Surface Models. Environmental Science & Technology, 2009, 43, 3803-3808.	4.6	123
84	Particle Size Distribution, Concentration, and Magnetic Attraction Affect Transport of Polymer-Modified Fe ⁰ Nanoparticles in Sand Columns. Environmental Science & Technology, 2009, 43, 5079-5085.	4.6	292
85	Enhanced mixing in polyacrylamide gels containing embedded silica nanoparticles as internal electroosmotic pumps. Colloids and Surfaces B: Biointerfaces, 2008, 61, 262-269.	2.5	16
86	Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. Journal of Nanoparticle Research, 2008, 10, 795-814.	0.8	467
87	Synthesis and Singleâ€Particle Optical Detection of Lowâ€Polydispersity Plasmonicâ€Superparamagnetic Nanoparticles. Advanced Materials, 2008, 20, 1721-1726.	11.1	98
88	lonic Strength and Composition Affect the Mobility of Surface-Modified Fe ⁰ Nanoparticles in Water-Saturated Sand Columns. Environmental Science & Technology, 2008, 42, 3349-3355.	4.6	478
89	Postdeposition Dispersion of Aerosol Medications Using Surfactant Carriers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2008, 21, 361-370.	0.7	22
90	Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions. Environmental Science & Technology, 2007, 41, 284-290.	4.6	917

#	Article	IF	CITATIONS
91	High Capacity, Charge-Selective Protein Uptake by Polyelectrolyte Brushes. Langmuir, 2007, 23, 4448-4454.	1.6	135
92	Synergistic Effects of Polymers and Surfactants on Depletion Forces. Langmuir, 2007, 23, 4351-4357.	1.6	36
93	Surface Modifications Enhance Nanoiron Transport and NAPL Targeting in Saturated Porous Media. Environmental Engineering Science, 2007, 24, 45-57.	0.8	403
94	Aggregation of lysozyme and of poly(ethylene glycol)-modified lysozyme after adsorption to silica. Colloids and Surfaces B: Biointerfaces, 2007, 57, 81-88.	2.5	40
95	Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 311, 78-83.	1.0	43
96	Titanium Dioxide (P25) Produces Reactive Oxygen Species in Immortalized Brain Microglia (BV2):Â Implications for Nanoparticle Neurotoxicityâ€. Environmental Science & Technology, 2006, 40, 4346-4352.	4.6	800
97	Microphase separation during binary electrophoretic deposition of particles with dissimilar polarizabilities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 277, 119-130.	2.3	5
98	Electroosmotically enhanced mass transfer through polyacrylamide gels. Journal of Colloid and Interface Science, 2006, 300, 429-436.	5.0	35
99	The role of electrode impedance and electrode geometry in the design of microelectrode systems. Journal of Colloid and Interface Science, 2006, 297, 819-831.	5.0	13
100	Lateral separation of colloids or cells by dielectrophoresis augmented by AC electroosmosis. Journal of Colloid and Interface Science, 2005, 285, 179-191.	5.0	58
101	Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloid and Interface Science, 2005, 285, 845-856.	5.0	50
102	Adsorption of poly(ethylene glycol)-modified ribonuclease A to a poly(lactide-co-glycolide) surface. Biotechnology and Bioengineering, 2005, 90, 856-868.	1.7	34
103	Calculation of the dynamic impedance of the double layer on a planar electrode by the theory of electrokinetics. Journal of Colloid and Interface Science, 2005, 292, 277-289.	5.0	18
104	Adsorbed Triblock Copolymers Deliver Reactive Iron Nanoparticles to the Oil/Water Interface. Nano Letters, 2005, 5, 2489-2494.	4.5	302
105	Oil-in-Water Emulsions Stabilized by Highly Charged Polyelectrolyte-Grafted Silica Nanoparticles. Langmuir, 2005, 21, 9873-9878.	1.6	176
106	Adsorption of Poly(ethylene glycol)-Modified Lysozyme to Silica. Langmuir, 2005, 21, 1328-1337.	1.6	54
107	TCE Dechlorination Rates, Pathways, and Efficiency of Nanoscale Iron Particles with Different Properties. Environmental Science & Technology, 2005, 39, 1338-1345.	4.6	708
108	Coadsorption and Surface Forces for Selective Surfaces in Contact with Aqueous Mixtures of Oppositely Charged Surfactants and Low Charge Density Polyelectrolytes. Langmuir, 2004, 20, 3221-3230.	1.6	27

#	Article	IF	CITATIONS
109	Rheology of transient networks containing hydrophobically modified cellulose, anionic surfactant and colloidal silica: role of selective adsorption. Rheologica Acta, 2004, 43, 50-61.	1.1	9
110	Direct force measurement of the stability of poly(ethylene glycol)–polyethylenimine graft films. Journal of Colloid and Interface Science, 2004, 276, 306-316.	5.0	21
111	Experimental Observations on the Scaling of Adsorption Isotherms for Nonionic Surfactants at a Hydrophobic Solidâ^'Water Interface. Langmuir, 2004, 20, 4446-4451.	1.6	17
112	Unified Model To Predict Self-Assembly of Nonionic Surfactants in Solution and Adsorption on Solid or Fluid Hydrophobic Surfaces:Â Effect of Molecular Structure. Langmuir, 2004, 20, 4452-4464.	1.6	13
113	Coverage-Dependent Orientation of Lysozyme Adsorbed on Silica. Langmuir, 2003, 19, 3848-3857.	1.6	115
114	Surfactant Self-Assembly ahead of the Contact Line on a Hydrophobic Surface and Its Implications for Wetting. Langmuir, 2003, 19, 5366-5373.	1.6	44
115	Effect of Flow on Human Serum Albumin Adsorption to Self-Assembled Monolayers of Varying Packing Density. Langmuir, 2003, 19, 5464-5474.	1.6	24
116	Coadsorption of Sodium Dodecyl Sulfate with Hydrophobically Modified Nonionic Cellulose Polymers. 2. Role of Surface Selectivity in Adsorption Hysteresis. Langmuir, 2003, 19, 2714-2721.	1.6	32
117	Control of Persistent Nonequilibrium Adsorbed Polymer Layer Structure by Transient Exposure to Surfactants. Langmuir, 2003, 19, 2736-2744.	1.6	33
118	Coadsorption of Sodium Dodecyl Sulfate with Hydrophobically Modified Nonionic Cellulose Polymers. 1. Role of Polymer Hydrophobic Modification. Langmuir, 2003, 19, 2705-2713.	1.6	69
119	Mobility of Biomolecules at Interfaces. Surfactant Science, 2003, , .	0.0	1
120	Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA. Electrophoresis, 2002, 23, 2766-2776.	1.3	85
121	Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. Biotechnology and Bioengineering, 2002, 77, 290-295.	1.7	37
122	Specific Counterion Effects on the Competitive Co-adsorption of Polyelectrolytes and Ionic Surfactants. Journal of Colloid and Interface Science, 2002, 249, 282-289.	5.0	22
123	Electrostatically Tunable Coadsorption of Sodium Dodecyl Sulfate and Poly(ethylene) Tj ETQq1 1 0.784314 rgBT 883-890.	Overlock 1.6	10 Tf 50 187 62
124	A Connection between Interfacial Self-Assembly and the Inhibition of Hexadecyltrimethylammonium Bromide Adsorption on Silica by Poly-I-lysine. Langmuir, 2001, 17, 219-227.	1.6	34
125	Adsorption of protein/surfactant complexes at the air/aqueous interface. Colloids and Surfaces B: Biointerfaces, 2001, 20, 281-293.	2.5	27
126	Interfacial Structure and Rearrangement of Nonionic Surfactants near a Moving Contact Line. Langmuir, 2001, 17, 5917-5923.	1.6	18

#	Article	IF	CITATIONS
127	Counterion Effects on Hexadecyltrimethylammonium Surfactant Adsorption and Self-Assembly on Silica. Langmuir, 2000, 16, 2548-2556.	1.6	216
128	Effect of Electrolytes on the Pyrene Solubilization Capacity of Dodecyl Sulfate Micelles. Langmuir, 2000, 16, 10037-10043.	1.6	48
129	Pyrene solubilization capacity in octaethylene glycol monododecyl ether (C12E8) micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150, 55-68.	2.3	19
130	Adsorption of serum albumin to thin films of poly(lactide-co-glycolide). Journal of Controlled Release, 1999, 58, 335-347.	4.8	46
131	Measurement of Catalytic Reaction Kinetics for Adsorbed Enzyme Monolayers. Journal of Colloid and Interface Science, 1999, 213, 208-217.	5.0	9
132	Pyrene Micropartitioning and Solubilization by Sodium Dodecyl Sulfate Complexes with Poly(ethylene) Tj ETQq0	0 0 rgBT / 1.2	Overlock 10 1
133	Depletion Attraction Caused by Unadsorbed Polyelectrolytes. Langmuir, 1998, 14, 5106-5112.	1.6	48
134	Kinetics and Mechanism of Cationic Surfactant Adsorption and Coadsorption with Cationic Polyelectrolytes at the Silicaâ^'Water Interface. Langmuir, 1998, 14, 2333-2342.	1.6	117
135	Penetration of Insoluble Lipid Monolayers at the Airâ^ Water Interface by Water-Soluble Block Copolymers and Homopolymers. Langmuir, 1997, 13, 5524-5527.	1.6	14
136	A Comparison of Polystyreneâ^'Poly(ethylene oxide) Diblock Copolymer and Poly(ethylene oxide) Homopolymer Adsorption from Aqueous Solutions. Langmuir, 1997, 13, 2993-3001.	1.6	58
137	Coadsorption of Polylysine and the Cationic Surfactant Cetyltrimethylammonium Bromide on Silica. Industrial & Engineering Chemistry Research, 1996, 35, 1566-1574.	1.8	90
138	Spontaneous Reconfiguration of Adsorbed Lysozyme Layers Observed by Total Internal Reflection Fluorescence with a pH-Sensitive Fluorophore. Langmuir, 1996, 12, 6104-6113.	1.6	120
139	A Scanning Angle Reflectometry Investigation of Block Copolymer Adsorption to Insoluble Lipid Monolayers at the Airâ ^{-,} Water Interface. The Journal of Physical Chemistry, 1996, 100, 3179-3189.	2.9	24
140	Short-Range Interaction between Adsorbed Layers of Human Serum Albumin. Journal of Colloid and Interface Science, 1994, 166, 427-436.	5.0	54
141	Interaction between Adsorbed Layers of Lysozyme Studied with the Surface Force Technique. Langmuir, 1994, 10, 2325-2334.	1.6	82
142	Surface Diffusion of Adsorbed Proteins in the Vicinity of the Substrate Glass Transition Temperature. Journal of Colloid and Interface Science, 1993, 159, 243-245.	5.0	15
143	Effect of anionic surfactant on interactions between lysozyme layers adsorbed on mica. Langmuir, 1993, 9, 2102-2108.	1.6	45
144	Manipulation of hydrophobic interactions in protein adsorption. Langmuir, 1991, 7, 2710-2718.	1.6	109

0

#	Article	IF	CITATIONS
145	Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface. Journal of Colloid and Interface Science, 1990, 137, 192-203.	5.0	147

146 Mixtures of Polymers and Surfactants. , 0, , 4718-4731.