List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5522810/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>Prph2</i> disease mutations lead to structural and functional defects in the RPE. FASEB Journal, 2022, 36, e22284.	0.5	3
2	Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biology, 2022, 54, 102375.	9.0	4
3	Absence of retbindin blocks glycolytic flux, disrupts metabolic homeostasis, and leads to photoreceptor degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
4	Gene Therapy to the Retina and the Cochlea. Frontiers in Neuroscience, 2021, 15, 652215.	2.8	13
5	Photoreceptor Disc Enclosure Is Tightly Controlled by Peripherin-2 Oligomerization. Journal of Neuroscience, 2021, 41, 3588-3596.	3.6	14
6	Co-Injection of Sulfotyrosine Facilitates Retinal Uptake of Hyaluronic Acid Nanospheres Following Intravitreal Injection. Pharmaceutics, 2021, 13, 1510.	4.5	2
7	Modulation of SOD3 Levels Is Detrimental to Retinal Homeostasis. Antioxidants, 2021, 10, 1595.	5.1	4
8	Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Frontiers in Cell and Developmental Biology, 2020, 8, 861.	3.7	14
9	ROM1 contributes to phenotypic heterogeneity in PRPH2-associated retinal disease. Human Molecular Genetics, 2020, 29, 2708-2722.	2.9	7
10	Syntaxin 3 is essential for photoreceptor outer segment protein trafficking and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20615-20624.	7.1	23
11	Pluripotent Stem Cells for the Treatment of Retinal Degeneration: Current Strategies and Future Directions. Frontiers in Cell and Developmental Biology, 2020, 8, 743.	3.7	12
12	Retbindin: A riboflavin Binding Protein, Is Critical for Photoreceptor Homeostasis and Survival in Models of Retinal Degeneration. International Journal of Molecular Sciences, 2020, 21, 8083.	4.1	4
13	Photoreceptor Disc Enclosure Occurs in the Absence of Normal Peripherin-2/rds Oligomerization. Frontiers in Cellular Neuroscience, 2020, 14, 92.	3.7	12
14	Elimination of a Retinal Riboflavin Binding Protein Exacerbates Degeneration in a Model of Cone-Rod Dystrophy. , 2020, 61, 17.		7
15	The Symbiotic Relationship between the Neural Retina and Retinal Pigment Epithelium Is Supported by Utilizing Differential Metabolic Pathways. IScience, 2020, 23, 101004.	4.1	27
16	The Intersection of Serine Metabolism and Cellular Dysfunction in Retinal Degeneration. Cells, 2020, 9, 674.	4.1	19
17	Novel molecular mechanisms for Prph2â€associated pattern dystrophy. FASEB Journal, 2020, 34, 1211-1230.	0.5	19
18	The Interplay between Peripherin 2 Complex Formation and Degenerative Retinal Diseases. Cells, 2020, 9, 784.	4.1	13

#	Article	IF	CITATIONS
19	Prph2 initiates outer segment morphogenesis but maturation requires Prph2/Rom1 oligomerization. Human Molecular Genetics, 2019, 28, 459-475.	2.9	26
20	Oxidative Stress, Diabetic Retinopathy, and Superoxide Dismutase 3. Advances in Experimental Medicine and Biology, 2019, 1185, 335-339.	1.6	9
21	The Role of theÂPrph2 C-Terminus in Outer Segment Morphogenesis. Advances in Experimental Medicine and Biology, 2019, 1185, 495-499.	1.6	3
22	Flavin Imbalance as anÂImportant Player in Diabetic Retinopathy. Advances in Experimental Medicine and Biology, 2019, 1185, 575-579.	1.6	3
23	Phenotypic characterization of P23H and S334ter rhodopsin transgenic rat models of inherited retinal degeneration. Experimental Eye Research, 2018, 167, 56-90.	2.6	72
24	Optimizing Non-viral Gene Therapy Vectors for Delivery to Photoreceptors and Retinal Pigment Epithelial Cells. Advances in Experimental Medicine and Biology, 2018, 1074, 109-115.	1.6	7
25	Role of Fibulins 2 and 5 in Retinal Development and Maintenance. Advances in Experimental Medicine and Biology, 2018, 1074, 275-280.	1.6	1
26	Retbindin Is Capable of Protecting Photoreceptors from Flavin-Sensitized Light-Mediated Cell Death In Vitro. Advances in Experimental Medicine and Biology, 2018, 1074, 485-490.	1.6	4
27	Flavin homeostasis in the mouse retina during aging and degeneration. Journal of Nutritional Biochemistry, 2018, 62, 123-133.	4.2	12
28	Differential composition of DHA and very-long-chain PUFAs in rod and cone photoreceptors. Journal of Lipid Research, 2018, 59, 1586-1596.	4.2	56
29	DNA nanoparticles are safe and nontoxic in non-human primate eyes. International Journal of Nanomedicine, 2018, Volume 13, 1361-1379.	6.7	26
30	Oligomerization of Prph2 and Rom1 is essential for photoreceptor outer segment formation. Human Molecular Genetics, 2018, 27, 3507-3518.	2.9	44
31	Rom1 converts Y141C-Prph2-associated pattern dystrophy to retinitis pigmentosa. Human Molecular Genetics, 2017, 26, ddw408.	2.9	26
32	Ablation of the riboflavin-binding protein retbindin reduces flavin levels and leads to progressive and dose-dependent degeneration of rods and cones. Journal of Biological Chemistry, 2017, 292, 21023-21034.	3.4	27
33	Role of RDS and Rhodopsin inCngb1-Related Retinal Degeneration. , 2016, 57, 787.		10
34	The K153Del PRPH2 mutation differentially impacts photoreceptor structure and function. Human Molecular Genetics, 2016, 25, 3500-3514.	2.9	22
35	Nanoparticle-mediated miR200-b delivery for the treatment of diabetic retinopathy. Journal of Controlled Release, 2016, 236, 31-37.	9.9	39
36	PRPH2/RDS and ROM-1: Historical context, current views and future considerations. Progress in Retinal and Eye Research, 2016, 52, 47-63.	15.5	92

#	Article	IF	CITATIONS
37	The Potential Role of Flavins and Retbindin in Retinal Function and Homeostasis. Advances in Experimental Medicine and Biology, 2016, 854, 643-648.	1.6	2
38	Therapeutic Approach of Nanotechnology for Oxidative Stress Induced Ocular Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, 2016, 854, 463-469.	1.6	17
39	RDS Functional Domains and Dysfunction in Disease. Advances in Experimental Medicine and Biology, 2016, 854, 217-222.	1.6	4
40	Characterization of Ribozymes Targeting a Congenital Night Blindness Mutation in Rhodopsin Mutation. Advances in Experimental Medicine and Biology, 2016, 854, 509-515.	1.6	1
41	Retinal Degeneration Slow (RDS) Glycosylation Plays a Role in Cone Function and in the Regulation of RDS·ROM-1 Protein Complex Formation. Journal of Biological Chemistry, 2015, 290, 27901-27913.	3.4	21
42	SNAREs Interact with Retinal Degeneration Slow and Rod Outer Segment Membrane Protein-1 during Conventional and Unconventional Outer Segment Targeting. PLoS ONE, 2015, 10, e0138508.	2.5	29
43	Varying the GARP2-to-RDS Ratio Leads to Defects in Rim Formation and Rod and Cone Function. , 2015, 56, 8187.		9
44	Retbindin Is an Extracellular Riboflavin-binding Protein Found at the Photoreceptor/Retinal Pigment Epithelium Interface. Journal of Biological Chemistry, 2015, 290, 5041-5052.	3.4	23
45	Glycosylation of rhodopsin is necessary for its stability and incorporation into photoreceptor outer segment discs. Human Molecular Genetics, 2015, 24, 2709-2723.	2.9	27
46	Nanoparticle-based technologies for retinal gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 353-367.	4.3	76
47	Impaired Association of Retinal Degeneration-3 with Guanylate Cyclase-1 and Guanylate Cyclase-activating Protein-1 Leads to Leber Congenital Amaurosis-1. Journal of Biological Chemistry, 2015, 290, 3488-3499.	3.4	34
48	Genomic DNA nanoparticles rescue rhodopsinâ€associated retinitis pigmentosa phenotype. FASEB Journal, 2015, 29, 2535-2544.	0.5	44
49	Non-viral therapeutic approaches to ocular diseases: An overview and future directions. Journal of Controlled Release, 2015, 219, 471-487.	9.9	40
50	Genotypic and Phenotypic Characterization of P23H Line 1 Rat Model. PLoS ONE, 2015, 10, e0127319.	2.5	51
51	Initiation of Rod Outer Segment Disc Formation Requires RDS. PLoS ONE, 2014, 9, e98939.	2.5	32
52	Synthesis and Characterization of Glycol Chitosan DNA Nanoparticles for Retinal Gene Delivery. ChemMedChem, 2014, 9, 189-196.	3.2	44
53	Gene Therapy for PRPH2-Associated Ocular Disease: Challenges and Prospects. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a017376-a017376.	6.2	37
54	Insights into the mechanisms of macular degeneration associated with the R172W mutation in RDS. Human Molecular Genetics, 2014, 23, 3102-3114.	2.9	42

#	Article	IF	CITATIONS
55	The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse. Human Molecular Genetics, 2014, 23, 6260-6274.	2.9	40
56	Fibulin 2, a Tyrosine O-Sulfated Protein, Is Up-regulated Following Retinal Detachment. Journal of Biological Chemistry, 2014, 289, 13419-13433.	3.4	10
57	Rim formation is not a prerequisite for distribution of cone photoreceptor outer segment proteins. FASEB Journal, 2014, 28, 3468-3479.	0.5	16
58	Yttrium oxide nanoparticles prevent photoreceptor death in a light-damage model of retinal degeneration. Free Radical Biology and Medicine, 2014, 75, 140-148.	2.9	47
59	A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials, 2013, 34, 7158-7167.	11.4	57
60	Persistence of non-viral vector mediated RPE65 expression: Case for viability as a gene transfer therapy for RPE-based diseases. Journal of Controlled Release, 2013, 172, 745-752.	9.9	39
61	Structural characterization of the second intraâ€discal loop of the photoreceptor tetraspanin <scp>RDS</scp> . FEBS Journal, 2013, 280, 127-138.	4.7	6
62	S/MAR-containing DNA nanoparticles promote persistent RPE gene expression and improvement in RPE65-associated LCA. Human Molecular Genetics, 2013, 22, 1632-1642.	2.9	66
63	Overexpression of Retinal Degeneration Slow (RDS) Protein Adversely Affects Rods in the rd7 Model of Enhanced S-Cone Syndrome. PLoS ONE, 2013, 8, e63321.	2.5	2
64	Structural and functional relationships between photoreceptor tetraspanins and other superfamily members. Cellular and Molecular Life Sciences, 2012, 69, 1035-1047.	5.4	26
65	Overexpression of ROM-1 in the Cone-Dominant Retina. Advances in Experimental Medicine and Biology, 2012, 723, 633-639.	1.6	6
66	Mislocalization of Oligomerization-Incompetent RDS is Associated with Mislocalization of Cone Opsins and Cone Transducin. Advances in Experimental Medicine and Biology, 2012, 723, 657-662.	1.6	3
67	DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. Journal of Clinical Investigation, 2012, 122, 3221-3226.	8.2	130
68	Defects in the Outer Limiting Membrane Are Associated with Rosette Development in the Nrlâ^'/â^' Retina. PLoS ONE, 2012, 7, e32484.	2.5	43
69	Differential Developmental Deficits in Retinal Function in the Absence of either Protein Tyrosine Sulfotransferase-1 or -2. PLoS ONE, 2012, 7, e39702.	2.5	10
70	Comparative Analysis of DNA Nanoparticles and AAVs for Ocular Gene Delivery. PLoS ONE, 2012, 7, e52189.	2.5	67
71	Nanoparticle-mediated gene transfer specific to retinal pigment epithelial cells. Biomaterials, 2011, 32, 9483-9493.	11.4	41
72	Gene delivery to mitotic and postmitotic photoreceptors <i>Via</i> compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB Journal, 2010, 24, 1178-1191.	0.5	108

#	Article	IF	CITATIONS
73	Differences in RDS trafficking, assembly and function in cones versus rods: insights from studies of C150S-RDS. Human Molecular Genetics, 2010, 19, 4799-4812.	2.9	46
74	A 350Âbp region of the proximal promoter of Rds drives cell-type specific gene expression. Experimental Eye Research, 2010, 91, 186-194.	2.6	7
75	A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles. PLoS ONE, 2009, 4, e5290.	2.5	93
76	RPE65: Role in the Visual Cycle, Human Retinal Disease, and Gene Therapy. Ophthalmic Genetics, 2009, 30, 57-62.	1.2	112
77	Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Human Molecular Genetics, 2009, 18, 797-808.	2.9	59
78	Focus on molecules: RDS. Experimental Eye Research, 2009, 89, 278-279.	2.6	8
79	Ocular Delivery of Compacted DNA-Nanoparticles Does Not Elicit Toxicity in the Mouse Retina. PLoS ONE, 2009, 4, e7410.	2.5	66
80	Differential distribution of proteins and lipids in detergentâ€resistant and detergentâ€soluble domains in rod outer segment plasma membranes and disks. Journal of Neurochemistry, 2008, 104, 336-352.	3.9	32
81	Nanoparticle applications in ocular gene therapy. Vision Research, 2008, 48, 319-324.	1.4	93
82	Outer Segment Oligomerization of Rds: Evidence from Mouse Models and Subcellular Fractionationâ€. Biochemistry, 2008, 47, 1144-1156.	2.5	46
83	Expression Profiling after Retinal Detachment and Reattachment: A Possible Role for Aquaporin-O. , 2008, 49, 511.		35
84	Genetic Supplementation of RDS Alleviates a Loss-of-function Phenotype in C214S Model of Retinitis Pigmentosa. Advances in Experimental Medicine and Biology, 2008, 613, 129-138.	1.6	18
85	Nonviral ocular gene therapy: assessment and future directions. Current Opinion in Molecular Therapeutics, 2008, 10, 456-63.	2.8	28
86	Retinal Stem Cells Transplanted into Models of Late Stages of Retinitis Pigmentosa Preferentially Adopt a Glial or a Retinal Ganglion Cell Fate. , 2007, 48, 446.		98
87	Late-Onset Cone Photoreceptor Degeneration Induced by R172W Mutation in Rds and Partial Rescue by Gene Supplementation. , 2007, 48, 5397.		23
88	Effect of Rds abundance on cone outer segment morphogenesis, photoreceptor gene expression, and outer limiting membrane integrity. Journal of Comparative Neurology, 2007, 504, 619-630.	1.6	32
89	Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles. PLoS ONE, 2006, 1, e38.	2.5	182
90	Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. Journal of Cell Biology, 2006, 173, 59-68.	5.2	87

#	Article	IF	CITATIONS
91	The Role of Rds in Outer Segment Morphogenesis and Human Retinal Disease. Ophthalmic Genetics, 2006, 27, 117-122.	1.2	36
92	882. Non-Viral Ocular Gene Transfer for Hereditary Retinal Degeneration. Molecular Therapy, 2006, 13, S340.	8.2	3
93	Light/Dark Translocation of Alphatransducin in Mouse Photoreceptor Cells Expressing G90D Mutant Opsin. , 2006, 572, 125-131.		2
94	The Cys214→Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochemical Journal, 2005, 388, 605-613.	3.7	74
95	Role of the Second Intradiscal Loop of Peripherin/ <i>rds </i> in Homo and Hetero Associations. Biochemistry, 2005, 44, 4897-4904.	2.5	45
96	Expression of Cone-Photoreceptor–Specific Antigens in a Cell Line Derived from Retinal Tumors in Transgenic Mice. , 2004, 45, 764.		295
97	Absence of Functional and Structural Abnormalities Associated with Expression of EGFP in the Retina. , 2004, 45, 15.		15
98	The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Human Molecular Genetics, 2004, 13, 2075-2087.	2.9	87
99	Modulating Expression of Peripherin/rdsin Transgenic Mice: Critical Levels and the Effect of Overexpression. , 2004, 45, 2514.		63
100	Constitutive Overexpression of Human Erythropoietin Protects the Mouse Retina against Induced But Not Inherited Retinal Degeneration. Journal of Neuroscience, 2004, 24, 5651-5658.	3.6	122
101	Retinal abnormalities associated with the G90D mutation in opsin. Journal of Comparative Neurology, 2004, 478, 149-163.	1.6	33
102	Molecular Characterization of the Skate Peripherin/rdsGene: Relationship to Its Orthologues and Paralogues. , 2003, 44, 2433.		18
103	P2Y2Receptor Agonist INS37217 Enhances Functional Recovery after Detachment Caused by Subretinal Injection in Normal andrdsMice. , 2003, 44, 4505.		44
104	Mouse Models of Human Retinal Disease Caused by Expression of Mutant Rhodopsin. Advances in Experimental Medicine and Biology, 2003, 533, 173-179.	1.6	8
105	Peripherin/Rds in Skate Retina. Advances in Experimental Medicine and Biology, 2003, 533, 377-383.	1.6	5
106	Retinal Degeneration in the nervous Mutant Mouse. IV. Inner Retinal Changes. Experimental Eye Research, 2001, 72, 243-252.	2.6	12
107	Transgenic Bcl-2 Expressed in Photoreceptor Cells Confers Both Death-sparing and Death-inducing Effects. Experimental Eye Research, 2001, 73, 711-721.	2.6	17
108	Expression of a mutant opsin gene increases the susceptibility of the retina to light damage. Visual Neuroscience, 1997, 14, 55-62.	1.0	95

#	Article	IF	CITATIONS
109	The Effect of Peripherin/rds Haploinsufficiency on Rod and Cone Photoreceptors. Journal of Neuroscience, 1997, 17, 8118-8128.	3.6	111
110	Structural and developmental analysis of the mouse peripherin/rds gene. Somatic Cell and Molecular Genetics, 1997, 23, 165-183.	0.7	13
111	Polygenic Disease and Retinitis Pigmentosa: Albinism Exacerbates Photoreceptor Degeneration Induced by the Expression of a Mutant Opsin in Transgenic Mice. Journal of Neuroscience, 1996, 16, 7853-7858.	3.6	43
112	Properties of the mouse cone-mediated electroretinogram during light adaptation. Neuroscience Letters, 1993, 162, 9-11.	2.1	105
113	Photoreceptor physiology in the rat is governed by the light environment. Experimental Eye Research, 1989, 49, 205-215.	2.6	35
114	Glutathione-dependent enzymes in intact rod outer segments. Experimental Eye Research, 1989, 48, 309-318.	2.6	20
115	Effect of light history on retinal antioxidants and light damage susceptibility in the rat. Experimental Eye Research, 1987, 44, 779-788.	2.6	143
116	Characterization of glutathione peroxidase in frog retina. Current Eye Research, 1984, 3, 1299-1304.	1.5	10