Kamalendra Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/552238/publications.pdf

Version: 2024-02-01

83 papers 3,387 citations

172457 29 h-index 53 g-index

93 all docs 93 docs citations

93 times ranked 4980 citing authors

#	Article	IF	CITATIONS
1	Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine, 2022, 141, 105025.	7.0	32
2	Trans cohort metabolic reprogramming towards glutaminolysis in long-term successfully treated HIV-infection. Communications Biology, 2022, 5, 27.	4.4	13
3	Deletion of Specific Conserved Motifs from the N-Terminal Domain of αB-Crystallin Results in the Activation of Chaperone Functions. International Journal of Molecular Sciences, 2022, 23, 1099.	4.1	O
4	Omicron SARS-CoV-2 variant: Unique features and their impact on pre-existing antibodies. Journal of Autoimmunity, 2022, 126, 102779.	6.5	169
5	Inhibition of mitochondrial LonP1 protease by allosteric blockade of ATP binding and hydrolysis via CDDO and its derivatives. Journal of Biological Chemistry, 2022, 298, 101719.	3.4	6
6	Complex Mutation Pattern of Omicron BA.2: Evading Antibodies without Losing Receptor Interactions. International Journal of Molecular Sciences, 2022, 23, 5534.	4.1	10
7	Copper metabolism as a unique vulnerability in cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118893.	4.1	191
8	Evolution, correlation, structural impact and dynamics of emerging SARS-CoV-2 variants. Computational and Structural Biotechnology Journal, 2021, 19, 3799-3809.	4.1	24
9	Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents. Expert Opinion on Therapeutic Patents, 2021, 31, 339-350.	5.0	31
10	Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World Journal of Gastroenterology, 2021, 27, 4763-4783.	3.3	9
11	Fecal Metabolome Signature in the HIV-1 Elite Control Phenotype: Enrichment of Dipeptides Acts as an HIV-1 Antagonist but a <i>Prevotella</i> Agonist. Journal of Virology, 2021, 95, e0047921.	3.4	7
12	Distinct Metabolic Profile Associated with a Fatal Outcome in COVID-19 Patients during the Early Epidemic in Italy. Microbiology Spectrum, 2021, 9, e0054921.	3.0	6
13	Discovery and Evaluation of Entry Inhibitors for SARS-CoV-2 and Its Emerging Variants. Journal of Virology, 2021, 95, e0143721.	3.4	24
14	Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. Journal of Autoimmunity, 2021, 124, 102715.	6.5	209
15	Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerging Microbes and Infections, 2020, 9, 1748-1760.	6.5	221
16	Increased HIV in Greater Kinshasa Urban Health Zones: Democratic Republic of Congo (2017–2018). AIDS Research and Therapy, 2020, 17, 67.	1.7	7
17	2′-fluoro-modified pyrimidines enhance affinity of RNA oligonucleotides to HIV-1 reverse transcriptase. Rna, 2020, 26, 1667-1679.	3.5	16
18	Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. Journal of Proteome Research, 2020, 19, 4259-4274.	3.7	32

#	Article	IF	Citations
19	Infectivity of SARS-CoV-2: there Is Something More than D614G?. Journal of NeuroImmune Pharmacology, 2020, 15, 574-577.	4.1	44
20	Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens, 2020, 9, 320.	2.8	26
21	GS-CA Compounds: First-In-Class HIV-1 Capsid Inhibitors Covering Multiple Grounds. Frontiers in Microbiology, 2019, 10, 1227.	3. 5	43
22	HIV Capsid Inhibitors Beyond PF74. Diseases (Basel, Switzerland), 2019, 7, 56.	2.5	16
23	CMCdG, a Novel Nucleoside Analog with Favorable Safety Features, Exerts Potent Activity against Wild-Type and Entecavir-Resistant Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	17
24	Virion-associated, host-derived DHX9/RNA helicase A enhances the processivity of HIV-1 reverse transcriptase on genomic RNA. Journal of Biological Chemistry, 2019, 294, 11473-11485.	3.4	19
25	Long-Acting Anti-HIV Drugs Targeting HIV-1 Reverse Transcriptase and Integrase. Pharmaceuticals, 2019, 12, 62.	3 . 8	30
26	Strain-specific effect on biphasic DNA binding by HIV-1 integrase. Aids, 2019, 33, 588-592.	2.2	6
27	HIV-1 Subtype C with PYxE Insertion Has Enhanced Binding of Gag-p6 to Host Cell Protein ALIX and Increased Replication Fitness. Journal of Virology, 2019, 93, .	3.4	11
28	Novel Hepatitis B Virus Capsid-Targeting Antiviral That Aggregates Core Particles and Inhibits Nuclear Entry of Viral Cores. ACS Infectious Diseases, 2019, 5, 750-758.	3.8	13
29	Bi-allelic mutations of <i>LONP1 </i> encoding the mitochondrial LonP1 protease cause pyruvate dehydrogenase deficiency and profound neurodegeneration with progressive cerebellar atrophy. Human Molecular Genetics, 2019, 28, 290-306.	2.9	27
30	Localization and Energy-Efficient Data Routing for Unmanned Aerial Vehicles: Fuzzy-Logic-Based Approach. IEEE Communications Magazine, 2018, 56, 129-133.	6.1	58
31	Analyses of HIV-1 integrase sequences prior to South African national HIV-treatment program and availability of integrase inhibitors in Cape Town, South Africa. Scientific Reports, 2018, 8, 4709.	3.3	21
32	Ex-vivo antiretroviral potency of newer integrase strand transfer inhibitors cabotegravir and bictegravir in HIV type 1 non-B subtypes. Aids, 2018, 32, 469-476.	2.2	31
33	Antiretroviral potency of 4′-ethnyl-2′-fluoro-2′-deoxyadenosine, tenofovir alafenamide and second-generation NNRTIs across diverse HIV-1 subtypes. Journal of Antimicrobial Chemotherapy, 2018, 73, 2721-2728.	3.0	12
34	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	3.4	5
35	Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions. Biology, 2018, 7, 5.	2.8	3
36	Structural Implications of Genotypic Variations in HIV-1 Integrase From Diverse Subtypes. Frontiers in Microbiology, 2018, 9, 1754.	3.5	19

#	Article	IF	CITATIONS
37	Acetylation and phosphorylation of human TFAM regulate TFAM–DNA interactions via contrasting mechanisms. Nucleic Acids Research, 2018, 46, 3633-3642.	14.5	63
38	Increased replication capacity following evolution of PYxE insertion in Gagâ€p6 is associated with enhanced virulence in HIVâ€1 subtype C from East Africa. Journal of Medical Virology, 2017, 89, 106-111.	5.0	12
39	Small molecule inhibitors block Gas6-inducible TAM activation and tumorigenicity. Scientific Reports, 2017, 7, 43908.	3.3	35
40	Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biology and Evolution, 2017, 9, 1212-1228.	2.5	13
41	3-Hydroxypyrimidine-2,4-Diones as Novel Hepatitis B Virus Antivirals Targeting the Viral Ribonuclease H. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	19
42	A 2-Hydroxyisoquinoline-1,3-Dione Active-Site RNase H Inhibitor Binds in Multiple Modes to HIV-1 Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	17
43	Structural basis of HIV inhibition by translocation-defective RT inhibitor $4\hat{a}\in^2$ -ethynyl-2-fluoro- $2\hat{a}\in^2$ -deoxyadenosine (EFdA). Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9274-9279.	7.1	73
44	Factors influencing the efficacy of rilpivirine in HIV-1 subtype C in low- and middle-income countries. Journal of Antimicrobial Chemotherapy, 2016, 71, 367-371.	3.0	6
45	Virological failure in patients with HIV-1 subtype C receiving antiretroviral therapy: an analysis of a prospective national cohort in Sweden. Lancet HIV,the, 2016, 3, e166-e174.	4.7	43
46	4′â€modified nucleoside analogs: Potent inhibitors active against entecavirâ€resistant hepatitis B virus. Hepatology, 2015, 62, 1024-1036.	7.3	43
47	Structural basis of cladeâ€specific HIVâ€1 neutralization by humanized antiâ€V3 monoclonal antibody KDâ€247. FASEB Journal, 2015, 29, 70-80.	0.5	2
48	CODAS Syndrome Is Associated with Mutations of LONP1, Encoding Mitochondrial AAA+ Lon Protease. American Journal of Human Genetics, 2015, 96, 121-135.	6.2	127
49	EMCOS: Energy-efficient Mechanism for Multimedia Streaming over Cognitive Radio Sensor Networks. Pervasive and Mobile Computing, 2015, 22, 16-32.	3.3	24
50	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	3.4	22
51	Drug Resistance in Non-B Subtype HIV-1: Impact of HIV-1 Reverse Transcriptase Inhibitors. Viruses, 2014, 6, 3535-3562.	3.3	27
52	4′-Ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) Inhibits HIV-1 Reverse Transcriptase with Multiple Mechanisms. Journal of Biological Chemistry, 2014, 289, 24533-24548.	3.4	80
53	Evaluation of SSYA10-001 as a Replication Inhibitor of Severe Acute Respiratory Syndrome, Mouse Hepatitis, and Middle East Respiratory Syndrome Coronaviruses. Antimicrobial Agents and Chemotherapy, 2014, 58, 4894-4898.	3.2	96
54	Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA. Retrovirology, 2013, 10, 65.	2.0	36

#	Article	IF	CITATIONS
55	Effects of Substitutions at the 4′ and 2 Positions on the Bioactivity of 4′-Ethynyl-2-Fluoro-2′-Deoxyadenosine. Antimicrobial Agents and Chemotherapy, 2013, 57, 6254-6264.	3.2	35
56	Repeated exposure to 5D9, an inhibitor of 3D polymerase, effectively limits the replication of foot-and-mouth disease virus in host cells. Antiviral Research, 2013, 98, 380-385.	4.1	8
57	Novel Inhibitors of Severe Acute Respiratory Syndrome Coronavirus Entry That Act by Three Distinct Mechanisms. Journal of Virology, 2013, 87, 8017-8028.	3.4	159
58	Biochemical Mechanism of HIV-1 Resistance to Rilpivirine. Journal of Biological Chemistry, 2012, 287, 38110-38123.	3.4	59
59	Severe Acute Respiratory Syndrome Coronavirus Replication Inhibitor That Interferes with the Nucleic Acid Unwinding of the Viral Helicase. Antimicrobial Agents and Chemotherapy, 2012, 56, 4718-4728.	3.2	105
60	HIV-1 Reverse Transcriptase (RT) Polymorphism 172K Suppresses the Effect of Clinically Relevant Drug Resistance Mutations to Both Nucleoside and Non-nucleoside RT Inhibitors. Journal of Biological Chemistry, 2012, 287, 29988-29999.	3.4	9
61	Biochemical, inhibition and inhibitor resistance studies of xenotropic murine leukemia virus-related virus reverse transcriptase. Nucleic Acids Research, 2012, 40, 345-359.	14.5	14
62	Structural and Inhibition Studies of the RNase H Function of Xenotropic Murine Leukemia Virus-Related Virus Reverse Transcriptase. Antimicrobial Agents and Chemotherapy, 2012, 56, 2048-2061.	3.2	31
63	Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 56-66.	4.1	139
64	Biochemical mechanism of clinical resistance to rilpivirine. BMC Infectious Diseases, 2012, 12, .	2.9	1
65	Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase. PLoS ONE, 2012, 7, e36521.	2.5	150
66	K70Q Adds High-Level Tenofovir Resistance to "Q151M Complex―HIV Reverse Transcriptase through the Enhanced Discrimination Mechanism. PLoS ONE, 2011, 6, e16242.	2.5	29
67	The N348I Mutation at the Connection Subdomain of HIV-1 Reverse Transcriptase Decreases Binding to Nevirapine. Journal of Biological Chemistry, 2010, 285, 38700-38709.	3.4	41
68	Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase. Viruses, 2010, 2, 606-638.	3.3	70
69	Inhibitors of Foot and Mouth Disease Virus Targeting a Novel Pocket of the RNA-Dependent RNA Polymerase. PLoS ONE, 2010, 5, e15049.	2.5	21
70	A new DNA polymerase I from Geobacillus caldoxylosilyticus TK4: cloning, characterization, and mutational analysis of two aromatic residues. Applied Microbiology and Biotechnology, 2009, 84, 105-117.	3.6	14
71	Identification of a New Motif Required for the 3′–5′ Exonuclease Activity of Escherichia coli DNA Polymerase I (Klenow Fragment). Journal of Biological Chemistry, 2008, 283, 17979-17990.	3.4	15
72	Participation of the Fingers Subdomain of Escherichia coli DNA Polymerase I in the Strand Displacement Synthesis of DNA. Journal of Biological Chemistry, 2007, 282, 10594-10604.	3.4	41

#	Article	IF	CITATIONS
73	Identification of R/KRRY motif in Klenow Fragment of E. coli DNA polymerase I: Its role in coordinating polymerase and exonuclease activity. FASEB Journal, 2007, 21, A656.	0.5	0
74	Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Oncogene, 2005, 24, 8187-8199.	5.9	31
75	Cleavage Site Selection within a Folded Substrate by the ATP-dependent Lon Protease*. Journal of Biological Chemistry, 2005, 280, 25103-25110.	3.4	100
76	Contribution of Polar Residues of the J-Helix in the 3 â^'5  Exonuclease Activity of Escherichia coli DNA Polymerase I (Klenow Fragment):  Q677 Regulates the Removal of Terminal Mismatch. Biochemistry, 2005, 44, 8101-8110.	2.5	10
77	Phe 771 of Escherichia coli DNA Polymerase I (Klenow Fragment) Is the Major Site for the Interaction with the Template Overhang and the Stabilization of the Pre-Polymerase Ternary Complex. Biochemistry, 2003, 42, 3645-3654.	2.5	11
78	Presence of 18-Ã Long Hydrogen Bond Track in the Active Site of Escherichia coli DNA Polymerase I (Klenow Fragment). Journal of Biological Chemistry, 2003, 278, 11289-11302.	3.4	22
79	Substitution of Conserved Hydrophobic Residues in Motifs B and C of HIV-1 RT Alters the Geometry of Its Catalytic Pocketâ€. Biochemistry, 2002, 41, 15685-15697.	2.5	19
80	Lysine 152 of MuLV Reverse Transcriptase Is Required for the Integrity of the Active Siteâ€. Biochemistry, 2002, 41, 14831-14842.	2.5	14
81	The J-helix of Escherichia coli DNA Polymerase I (Klenow Fragment) Regulates Polymerase and 3′– 5′-Exonuclease Functions. Journal of Biological Chemistry, 2000, 275, 23759-23768.	3.4	17
82	A unified DNA- and dNTP-binding mode for DNA polymerases. Trends in Biochemical Sciences, 1998, 23, 277-281.	7. 5	21
83	α-Crystallin quaternary structure: molecular basis for its chaperone activity. FEBS Letters, 1995, 372, 283-287.	2.8	25